ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Backlund curves in centroaffine geometry and Lames equation

62   0   0.0 ( 0 )
 نشر من قبل Gil Bor
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Twenty five years ago U. Pinkall discovered that the Korteweg-de Vries equation can be realized as an evolution of curves in centoraffine geometry. Since then, a number of authors interpreted various properties of KdV and its generalizations in terms of centoraffine geometry. In particular, the Backlund transformation of the Korteweg-de Vries equation can be viewed as a relation between centroaffine curves. Our paper concerns self-Backlund centroaffine curves. We describe general properties of these curves and provide a detailed description of them in terms of elliptic functions. Our work is a centroaffine counterpart to the study done by F. Wegner of a similar problem in Euclidean geometry, related to Ulams problem of describing the (2-dimensional) bodies that float in equilibrium in all positions and to bicycle kinematics. We also consider a discretization of the problem where curves are replaced by polygons. This is related to discretization of KdV and the cross-ratio dynamics on ideal polygons.



قيم البحث

اقرأ أيضاً

We relate the sub-Riemannian geometry on the group of rigid motions of the plane to `bicycling mathematics. We show that this geometrys geodesics correspond to bike paths whose front tracks are either non-inflectional Euler elasticae or straight line s, and that its infinite minimizing geodesics (or `metric lines) correspond to bike paths whose front tracks are either straight lines or `Eulers solitons (also known as Syntractrix or Convicts curves).
This paper is devoted to the complete classification of space curves under affine transformations in the view of Cartans theorem. Spivak has introduced the method but has not found the invariants. Furthermore, for the first time, we propound a necess ary and sufficient condition for the invariants. Then, we study the shapes of space curves with constant curvatures in detail and suggest their applications in physics, computer vision and image processing.
The geometry of an admissible Backlund transformation for an exterior differential system is described by an admissible Cartan connection for a geometric structure on a tower with infinite--dimensional skeleton which is the universal prolongation of a $|1|$--graded semi-simple Lie algebra.
We prove that the upper box dimension of an inhomogeneous self-affine set is bounded above by the maximum of the affinity dimension and the dimension of the condensation set. In addition, we determine sufficient conditions for this upper bound to be attained, which, in part, constitutes an exploration of the capacity for the condensation set to mitigate dimension drop between the affinity dimension and the corresponding homogeneous attractor. Our work improves and unifies previous results on general inhomogeneous attractors, low-dimensional affine systems, and inhomogeneous self-affine carpets, while providing inhomogeneous analogues of Falconers seminal results on homogeneous self-affine sets.
209 - Yasuhiko Yamada 2009
A Lax formalism for the elliptic Painleve equation is presented. The construction is based on the geometry of the curves on ${mathbb P}^1times{mathbb P}^1$ and described in terms of the point configurations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا