ترغب بنشر مسار تعليمي؟ اضغط هنا

A Lax Formalism for the Elliptic Difference Painleve Equation

196   0   0.0 ( 0 )
 نشر من قبل Yasuhiko Yamada
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Yasuhiko Yamada




اسأل ChatGPT حول البحث

A Lax formalism for the elliptic Painleve equation is presented. The construction is based on the geometry of the curves on ${mathbb P}^1times{mathbb P}^1$ and described in terms of the point configurations.



قيم البحث

اقرأ أيضاً

The 8-parameter elliptic Sakai difference Painleve equation admits a Lax formulation. We show that a suitable specialization of the Lax equation gives rise to the time-independent Schrodinger equation for the $BC_1$ 8-parameter relativistic Calogero- Moser Hamiltonian due to van Diejen. This amounts to a generalization of previous results concerning the Painleve-Calogero correspondence to the highest level in the two hierarchies.
301 - K.Kajiwara , T.Masuda , M.Noumi 2004
A theoretical foundation for a generalization of the elliptic difference Painleve equation to higher dimensions is provided in the framework of birational Weyl group action on the space of point configurations in general position in a projective spac e. By introducing an elliptic parametrization of point configurations, a realization of the Weyl group is proposed as a group of Cremona transformations containing elliptic functions in the coefficients. For this elliptic Cremona system, a theory of $tau$-functions is developed to translate it into a system of bilinear equations of Hirota-Miwa type for the $tau$-functions on the lattice.
Discrete Painleve equations are nonlinear, nonautonomous difference equations of second-order. They have coefficients that are explicit functions of the independent variable $n$ and there are three different types of equations according to whether th e coefficient functions are linear, exponential or elliptic functions of $n$. In this paper, we focus on the elliptic type and give a review of the construction of such equations on the $E_8$ lattice. The first such construction was given by Sakai cite{SakaiH2001:MR1882403}. We focus on recent developments giving rise to more examples of elliptic discrete Painleve equations.
An interpolation problem related to the elliptic Painleve equation is formulated and solved. A simple form of the elliptic Painleve equation and the Lax pair are obtained. Explicit determinant formulae of special solutions are also given.
90 - M. Jimbo , H. Nagoya , H. Sakai 2017
Iorgov, Lisovyy, and Teschner established a connection between isomonodromic deformation of linear differential equations and Liouville conformal field theory at $c=1$. In this paper we present a $q$ analog of their construction. We show that the gen eral solution of the $q$-Painleve VI equation is a ratio of four tau functions, each of which is given by a combinatorial series arising in the AGT correspondence. We also propose conjectural bilinear equations for the tau functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا