ﻻ يوجد ملخص باللغة العربية
Recent observational studies identified a foreground stellar sub-structure traced by red clump (RC) stars (~ 12 kpc in front of the main body) in the eastern regions of the Small Magellanic Cloud (SMC) and suggested that it formed during the formation of the Magellanic Bridge (MB), due to the tidal interaction of the Magellanic Clouds. Previous studies investigated this feature only up to 4.0 deg from the centre of the SMC due to the limited spatial coverage of the data and hence could not find a physical connection with the MB. To determine the spatial extent and properties of this foreground population, we analysed data from the Gaia data release 2 (DR2) of a ~ 314 sq. deg region centred on the SMC, which cover the entire SMC and a significant portion of the MB. We find that the foreground population is present only between 2.5 deg to ~ 5-6 deg from the centre of the SMC in the eastern regions, towards the MB and hence does not fully overlap with the MB in the plane of the sky. The foreground stellar population is found to be kinematically distinct from the stellar population of the main body with ~ 35 km/s slower tangential velocity and moving to the North-West relative to the main body. Though the observed properties are not fully consistent with the simulations, a comparison indicates that the foreground stellar structure is most likely a tidally stripped counterpart of the gaseous MB and might have formed from the inner disc (dominated by stars) of the SMC. A chemical and 3D kinematic study of the RC stars along with improved simulations, including both tidal and hydro-dynamical effects, are required to understand the offset between the foreground structure and MB.
The projected distribution of stars in the Small Magellanic Cloud (SMC) from the Magellanic Clouds Photometric Survey is analysed. Stars of different ages are selected via criteria based on V magnitude and V-I colour, and the degree of `grouping as a
We report the discovery of a stellar over-density 8$^{circ}$ north of the center of the Small Magellanic Cloud (Small Magellanic Cloud Northern Over-Density; SMCNOD) using data from the first two years of the Dark Energy Survey (DES) and the first ye
We present new observations of 34 YSO candidates in the SMC. The anchor of the analysis is a set of Spitzer-IRS spectra, supplemented by groundbased 3-5 micron spectra, Spitzer and NIR photometry, optical spectroscopy and radio data. The sources SEDs
We examine the three-dimensional structure and dust extinction properties in a ~ 200 pc $times$ 100 pc region in the southwest bar of the Small Magellanic Cloud (SMC). We model a deep Hubble Space Telescope optical color-magnitude diagram (CMD) of re
We used data from the near-infrared VISTA survey of the Magellanic Cloud system (VMC) to measure proper motions (PMs) of stars within the Small Magellanic Cloud (SMC). The data analysed in this study comprise 26 VMC tiles, covering a total contiguous