ترغب بنشر مسار تعليمي؟ اضغط هنا

A stellar over-density associated with the Small Magellanic Cloud

48   0   0.0 ( 0 )
 نشر من قبل Adriano Pieres Mr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a stellar over-density 8$^{circ}$ north of the center of the Small Magellanic Cloud (Small Magellanic Cloud Northern Over-Density; SMCNOD) using data from the first two years of the Dark Energy Survey (DES) and the first year of the MAGellanic SatelLITEs Survey (MagLiteS). The SMCNOD is indistinguishable in age, metallicity and distance from the nearby SMC stars, being primarly composed of intermediate-age stars (6 Gyr, Z=0.001), with a small fraction of young stars (1 Gyr, Z=0.01). The SMCNOD has an elongated shape with an ellipticity of 0.6 and a size of $sim$ 6x2 deg. It has an absolute magnitude of $M_V cong$ -7.7, $r_h = 2.1$ kpc, and $mu_V(r<r_h)$ = 31.2 mag arcsec$^{-2}$. We estimate a stellar mass of $sim 10^5$ $M_{odot}$, following a Kroupa mass function. The SMCNOD was probably removed from the SMC disk by tidal stripping, since it is located near the head of the Magellanic Stream, and the literature indicates likely recent LMC-SMC encounters. This scenario is supported by the lack of significant HI gas. Other potential scenarios for the SMCNOD origin are a transient over-density within the SMC tidal radius or a primordial SMC satellite in advanced stage of disruption.



قيم البحث

اقرأ أيضاً

We present new observations of 34 YSO candidates in the SMC. The anchor of the analysis is a set of Spitzer-IRS spectra, supplemented by groundbased 3-5 micron spectra, Spitzer and NIR photometry, optical spectroscopy and radio data. The sources SEDs and spectral indices are consistent with embedded YSOs; prominent silicate absorption is observed in the spectra of at least ten sources, silicate emission is observed towards four sources. PAH emission is detected towards all but two sources. Based on band ratios (in particular the strength of the 11.3 micron and the weakness of the 8.6 micron bands) PAH emission towards SMC YSOs is dominated by predominantly small neutral grains. Ice absorption is observed towards fourteen sources in the SMC. The comparison of H2O and CO2 ice column densities for SMC, LMC and Galactic samples suggests that there is a significant H2O column density threshold for the detection of CO2 ice. This supports the scenario proposed by Oliveira et al. (2011), where the reduced shielding in metal-poor environments depletes the H2O column density in the outer regions of the YSO envelopes. No CO ice is detected towards the SMC sources. Emission due to pure-rotational 0-0 transitions of H2 is detected towards the majority of SMC sources, allowing us to estimate rotational temperatures and column densities. All but one source are spectroscopically confirmed as SMC YSOs. Of the 33 YSOs identified in the SMC, 30 sources populate different stages of massive stellar evolution. The remaining three sources are classified as intermediate-mass YSOs with a thick dusty disc and a tenuous envelope still present. We propose one of the sources is a D-type symbiotic system, based on the presence of Raman, H and He emission lines in the optical spectrum, and silicate emission in the IRS-spectrum. This would be the first dust-rich symbiotic system identified in the SMC. (abridged)
We used data from the near-infrared VISTA survey of the Magellanic Cloud system (VMC) to measure proper motions (PMs) of stars within the Small Magellanic Cloud (SMC). The data analysed in this study comprise 26 VMC tiles, covering a total contiguous area on the sky of ~40 deg$^2$. Using multi-epoch observations in the Ks band over time baselines between 13 and 38 months, we calculated absolute PMs with respect to ~130,000 background galaxies. We selected a sample of ~2,160,000 likely SMC member stars to model the centre-of-mass motion of the galaxy. The results found for three different choices of the SMC centre are in good agreement with recent space-based measurements. Using the systemic motion of the SMC, we constructed spatially resolved residual PM maps and analysed for the first time the internal kinematics of the intermediate-age/old and young stellar populations separately. We found outward motions that point either towards a stretching of the galaxy or stripping of its outer regions. Stellar motions towards the North might be related to the Counter Bridge behind the SMC. The young populations show larger PMs in the region of the SMC Wing, towards the young Magellanic Bridge. In the older populations, we further detected a coordinated motion of stars away from the SMC in the direction of the Old Bridge as well as a stream towards the SMC.
Recent observational studies identified a foreground stellar sub-structure traced by red clump (RC) stars (~ 12 kpc in front of the main body) in the eastern regions of the Small Magellanic Cloud (SMC) and suggested that it formed during the formatio n of the Magellanic Bridge (MB), due to the tidal interaction of the Magellanic Clouds. Previous studies investigated this feature only up to 4.0 deg from the centre of the SMC due to the limited spatial coverage of the data and hence could not find a physical connection with the MB. To determine the spatial extent and properties of this foreground population, we analysed data from the Gaia data release 2 (DR2) of a ~ 314 sq. deg region centred on the SMC, which cover the entire SMC and a significant portion of the MB. We find that the foreground population is present only between 2.5 deg to ~ 5-6 deg from the centre of the SMC in the eastern regions, towards the MB and hence does not fully overlap with the MB in the plane of the sky. The foreground stellar population is found to be kinematically distinct from the stellar population of the main body with ~ 35 km/s slower tangential velocity and moving to the North-West relative to the main body. Though the observed properties are not fully consistent with the simulations, a comparison indicates that the foreground stellar structure is most likely a tidally stripped counterpart of the gaseous MB and might have formed from the inner disc (dominated by stars) of the SMC. A chemical and 3D kinematic study of the RC stars along with improved simulations, including both tidal and hydro-dynamical effects, are required to understand the offset between the foreground structure and MB.
Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ~40 km/s from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be alien stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.
Feedback from massive stars plays a critical role in the evolution of the Universe by driving powerful outflows from galaxies that enrich the intergalactic medium and regulate star formation. An important source of outflows may be the most numerous g alaxies in the Universe: dwarf galaxies. With small gravitational potential wells, these galaxies easily lose their star-forming material in the presence of intense stellar feedback. Here, we show that the nearby dwarf galaxy, the Small Magellanic Cloud (SMC), has atomic hydrogen outflows extending at least 2 kiloparsecs (kpc) from the star-forming bar of the galaxy. The outflows are cold, $T<400~{rm K}$, and may have formed during a period of active star formation $25 - 60$ million years (Myr) ago. The total mass of atomic gas in the outflow is $sim 10^7$ solar masses, ${rm M_{odot}}$, or $sim 3$% of the total atomic gas of the galaxy. The inferred mass flux in atomic gas alone, $dot{M}_{HI}sim 0.2 - 1.0~{rm M_{odot}~yr^{-1}}$, is up to an order of magnitude greater than the star formation rate. We suggest that most of the observed outflow will be stripped from the SMC through its interaction with its companion, the Large Magellanic Cloud (LMC), and the Milky Way, feeding the Magellanic Stream of hydrogen encircling the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا