ﻻ يوجد ملخص باللغة العربية
Study about theory and algorithms for constrained optimization usually assumes that the feasible region of the optimization problem is nonempty. However, there are many important practical optimization problems whose feasible regions are not known to be nonempty or not, and optimizers of the objective function with the least constraint violation prefer to be found. A natural way for dealing with these problems is to extend the constrained optimization problem as the one optimizing the objective function over the set of points with the least constraint violation. Firstly, the minimization problem with least constraint violation is proved to be an Lipschitz equality constrained optimization problem when the original problem is a convex optimization problem with possible inconsistent conic constraints, and it can be reformulated as an MPEC problem. Secondly, for nonlinear programming problems with possible inconsistent constraints, various types of stationary points are presented for the MPCC problem which is equivalent to the minimization problem with least constraint violation, and an elegant necessary optimality condition, named as L-stationary condition, is established from the classical optimality theory of Lipschitz continuous optimization. Finally, the smoothing Fischer-Burmeister function method for nonlinear programming case is constructed for solving the problem minimizing the objective function with the least constraint violation. It is demonstrated that, when the positive smoothing parameter approaches to zero, any point in the outer limit of the KKT-point mapping is an L-stationary point of the equivalent MPCC problem.
Gradient-free optimization methods, such as surrogate based optimization (SBO) methods, and genetic (GAs), or evolutionary (EAs) algorithms have gained popularity in the field of constrained optimization of expensive black-box functions. However, con
We conduct a study and comparison of superiorization and optimization approaches for the reconstruction problem of superiorized/regularized least-squares solutions of underdetermined linear equations with nonnegativity variable bounds. Regarding supe
A framework is proposed for solving general convex quadratic programs (CQPs) from an infeasible starting point by invoking an existing feasible-start algorithm tailored for inequality-constrained CQPs. The central tool is an exact penalty function sc
One revisits the standard saddle-point method based on conjugate duality for solving convex minimization problems. Our aim is to reduce or remove unnecessary topological restrictions on the constraint set. Dual equalities and characterizations of the
Support vector machine is an important and fundamental technique in machine learning. Soft-margin SVM models have stronger generalization performance compared with the hard-margin SVM. Most existing works use the hinge-loss function which can be rega