ترغب بنشر مسار تعليمي؟ اضغط هنا

A Majorization Penalty Method for SVM with Sparse Constraint

157   0   0.0 ( 0 )
 نشر من قبل Qingna Li
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Support vector machine is an important and fundamental technique in machine learning. Soft-margin SVM models have stronger generalization performance compared with the hard-margin SVM. Most existing works use the hinge-loss function which can be regarded as an upper bound of the 0-1 loss function. However, it can not explicitly limit the number of misclassified samples. In this paper, we use the idea of soft-margin SVM and propose a new SVM model with a sparse constraint. Our model can strictly limit the number of misclassified samples, expressing the soft-margin constraint as a sparse constraint. By constructing a majorization function, a majorization penalty method can be used to solve the sparse-constrained optimization problem. We apply Conjugate-Gradient (CG) method to solve the resulting subproblem. Extensive numerical results demonstrate the impressive performance of the proposed majorization penalty method.



قيم البحث

اقرأ أيضاً

This paper presents a sparse solver based on the alternating direction method of multipliers algorithm for a linear model predictive control (MPC) formulation in which the terminal state is constrained to a given ellipsoid. The motivation behind this solver is to substitute the typical polyhedral invariant set used as a terminal constraint in many nominal and robust linear MPC formulations with an invariant set in the form of an ellipsoid, which is (typically) much easier to compute and results in an optimization problem with significantly fewer constraints, even for average-sized systems. However, this optimization problem is no longer the quadratic programming problem found in most linear MPC approaches, thus meriting the development of a tailored solver. The proposed solver is suitable for its use in embedded systems, since it is sparse, has a small memory footprint and requires no external libraries. We show the results of its implementation in an embedded system to control a simulated multivariable plant, comparing it against other alternatives.
This paper addresses a distributed optimization problem in a communication network where nodes are active sporadically. Each active node applies some learning method to control its action to maximize the global utility function, which is defined as t he sum of the local utility functions of active nodes. We deal with stochastic optimization problem with the setting that utility functions are disturbed by some non-additive stochastic process. We consider a more challenging situation where the learning method has to be performed only based on a scalar approximation of the utility function, rather than its closed-form expression, so that the typical gradient descent method cannot be applied. This setting is quite realistic when the network is affected by some stochastic and time-varying process, and that each node cannot have the full knowledge of the network states. We propose a distributed optimization algorithm and prove its almost surely convergence to the optimum. Convergence rate is also derived with an additional assumption that the objective function is strongly concave. Numerical results are also presented to justify our claim.
Shape-constrained convex regression problem deals with fitting a convex function to the observed data, where additional constraints are imposed, such as component-wise monotonicity and uniform Lipschitz continuity. This paper provides a unified frame work for computing the least squares estimator of a multivariate shape-constrained convex regression function in $mathbb{R}^d$. We prove that the least squares estimator is computable via solving an essentially constrained convex quadratic programming (QP) problem with $(n+1)d$ variables, $n(n-1)$ linear inequality constraints and $n$ possibly non-polyhedral inequality constraints, where $n$ is the number of data points. To efficiently solve the generally very large-scale convex QP, we design a proximal augmented Lagrangian method (proxALM) whose subproblems are solved by the semismooth Newton method (SSN). To further accelerate the computation when $n$ is huge, we design a practical implementation of the constraint generation method such that each reduced problem is efficiently solved by our proposed proxALM. Comprehensive numerical experiments, including those in the pricing of basket options and estimation of production functions in economics, demonstrate that our proposed proxALM outperforms the state-of-the-art algorithms, and the proposed acceleration technique further shortens the computation time by a large margin.
In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal componen t of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, and are therefore computationally intractable, we rewrite them into the form of an optimization program involving maximization of a convex function on a compact set. The dimension of the search space is decreased enormously if the data matrix has many more columns (variables) than rows. We then propose and analyze a simple gradient method suited for the task. It appears that our algorithm has best convergence properties in the case when either the objective function or the feasible set are strongly convex, which is the case with our single-unit formulations and can be enforced in the block case. Finally, we demonstrate numerically on a set of random and gene expression test problems that our approach outperforms existing algorithms both in quality of the obtained solution and in computational speed.
In this paper, we consider a class of nonsmooth nonconvex optimization problems whose objective is the sum of a block relative smooth function and a proper and lower semicontinuous block separable function. Although the analysis of block proximal gra dient (BPG) methods for the class of block $L$-smooth functions have been successfully extended to Bregman BPG methods that deal with the class of block relative smooth functions, accelerated Bregman BPG methods are scarce and challenging to design. Taking our inspiration from Nesterov-type acceleration and the majorization-minimization scheme, we propose a block alternating Bregman Majorization-Minimization framework with Extrapolation (BMME). We prove subsequential convergence of BMME to a first-order stationary point under mild assumptions, and study its global convergence under stronger conditions. We illustrate the effectiveness of BMME on the penalized orthogonal nonnegative matrix factorization problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا