ﻻ يوجد ملخص باللغة العربية
Understanding the relationships between biomedical terms like viruses, drugs, and symptoms is essential in the fight against diseases. Many attempts have been made to introduce the use of machine learning to the scientific process of hypothesis generation(HG), which refers to the discovery of meaningful implicit connections between biomedical terms. However, most existing methods fail to truly capture the temporal dynamics of scientific term relations and also assume unobserved connections to be irrelevant (i.e., in a positive-negative (PN) learning setting). To break these limits, we formulate this HG problem as future connectivity prediction task on a dynamic attributed graph via positive-unlabeled (PU) learning. Then, the key is to capture the temporal evolution of node pair (term pair) relations from just the positive and unlabeled data. We propose a variational inference model to estimate the positive prior, and incorporate it in the learning of node pair embeddings, which are then used for link prediction. Experiment results on real-world biomedical term relationship datasets and case study analyses on a COVID-19 dataset validate the effectiveness of the proposed model.
Learning reward functions from data is a promising path towards achieving scalable Reinforcement Learning (RL) for robotics. However, a major challenge in training agents from learned reward models is that the agent can learn to exploit errors in the
Learning from positive and unlabeled data (PU learning) is prevalent in practical applications where only a couple of examples are positively labeled. Previous PU learning studies typically rely on existing samples such that the data distribution is
Positive-unlabeled learning refers to the process of training a binary classifier using only positive and unlabeled data. Although unlabeled data can contain positive data, all unlabeled data are regarded as negative data in existing positive-unlabel
Positive-Unlabeled (PU) learning is an analog to supervised binary classification for the case when only the positive sample is clean, while the negative sample is contaminated with latent instances of positive class and hence can be considered as an
This paper defines a positive and unlabeled classification problem for standard GANs, which then leads to a novel technique to stabilize the training of the discriminator in GANs. Traditionally, real data are taken as positive while generated data ar