ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Semantic Capacity of Terms

185   0   0.0 ( 0 )
 نشر من قبل Jie Huang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce and study semantic capacity of terms. For example, the semantic capacity of artificial intelligence is higher than that of linear regression since artificial intelligence possesses a broader meaning scope. Understanding semantic capacity of terms will help many downstream tasks in natural language processing. For this purpose, we propose a two-step model to investigate semantic capacity of terms, which takes a large text corpus as input and can evaluate semantic capacity of terms if the text corpus can provide enough co-occurrence information of terms. Extensive experiments in three fields demonstrate the effectiveness and rationality of our model compared with well-designed baselines and human-level evaluations.



قيم البحث

اقرأ أيضاً

272 - Ryo Nagata , Manabu Kimura , 2021
In this paper, we explore the capacity of a language model-based method for grammatical error detection in detail. We first show that 5 to 10% of training data are enough for a BERT-based error detection method to achieve performance equivalent to a non-language model-based method can achieve with the full training data; recall improves much faster with respect to training data size in the BERT-based method than in the non-language model method while precision behaves similarly. These suggest that (i) the BERT-based method should have a good knowledge of grammar required to recognize certain types of error and that (ii) it can transform the knowledge into error detection rules by fine-tuning with a few training samples, which explains its high generalization ability in grammatical error detection. We further show with pseudo error data that it actually exhibits such nice properties in learning rules for recognizing various types of error. Finally, based on these findings, we explore a cost-effective method for detecting grammatical errors with feedback comments explaining relevant grammatical rules to learners.
109 - Shuo Huang , Zhuang Li , Lizhen Qu 2021
Semantic parsing maps natural language (NL) utterances into logical forms (LFs), which underpins many advanced NLP problems. Semantic parsers gain performance boosts with deep neural networks, but inherit vulnerabilities against adversarial examples. In this paper, we provide the empirical study on the robustness of semantic parsers in the presence of adversarial attacks. Formally, adversaries of semantic parsing are considered to be the perturbed utterance-LF pairs, whose utterances have exactly the same meanings as the original ones. A scalable methodology is proposed to construct robustness test sets based on existing benchmark corpora. Our results answered five research questions in measuring the sate-of-the-art parsers performance on robustness test sets, and evaluating the effect of data augmentation.
120 - Kun Xu , Han Wu , Linfeng Song 2021
Semantic role labeling (SRL) aims to extract the arguments for each predicate in an input sentence. Traditional SRL can fail to analyze dialogues because it only works on every single sentence, while ellipsis and anaphora frequently occur in dialogue s. To address this problem, we propose the conversational SRL task, where an argument can be the dialogue participants, a phrase in the dialogue history or the current sentence. As the existing SRL datasets are in the sentence level, we manually annotate semantic roles for 3,000 chit-chat dialogues (27,198 sentences) to boost the research in this direction. Experiments show that while traditional SRL systems (even with the help of coreference resolution or rewriting) perform poorly for analyzing dialogues, modeling dialogue histories and participants greatly helps the performance, indicating that adapting SRL to conversations is very promising for universal dialogue understanding. Our initial study by applying CSRL to two mainstream conversational tasks, dialogue response generation and dialogue context rewriting, also confirms the usefulness of CSRL.
154 - Ruisheng Cao , Su Zhu , Chen Liu 2019
Semantic parsing converts natural language queries into structured logical forms. The paucity of annotated training samples is a fundamental challenge in this field. In this work, we develop a semantic parsing framework with the dual learning algorit hm, which enables a semantic parser to make full use of data (labeled and even unlabeled) through a dual-learning game. This game between a primal model (semantic parsing) and a dual model (logical form to query) forces them to regularize each other, and can achieve feedback signals from some prior-knowledge. By utilizing the prior-knowledge of logical form structures, we propose a novel reward signal at the surface and semantic levels which tends to generate complete and reasonable logical forms. Experimental results show that our approach achieves new state-of-the-art performance on ATIS dataset and gets competitive performance on Overnight dataset.
Public debate forums provide a common platform for exchanging opinions on a topic of interest. While recent studies in natural language processing (NLP) have provided empirical evidence that the language of the debaters and their patterns of interact ion play a key role in changing the mind of a reader, research in psychology has shown that prior beliefs can affect our interpretation of an argument and could therefore constitute a competing alternative explanation for resistance to changing ones stance. To study the actual effect of language use vs. prior beliefs on persuasion, we provide a new dataset and propose a controlled setting that takes into consideration two reader level factors: political and religious ideology. We find that prior beliefs affected by these reader level factors play a more important role than language use effects and argue that it is important to account for them in NLP studies of persuasion.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا