ﻻ يوجد ملخص باللغة العربية
Semantic role labeling (SRL) aims to extract the arguments for each predicate in an input sentence. Traditional SRL can fail to analyze dialogues because it only works on every single sentence, while ellipsis and anaphora frequently occur in dialogues. To address this problem, we propose the conversational SRL task, where an argument can be the dialogue participants, a phrase in the dialogue history or the current sentence. As the existing SRL datasets are in the sentence level, we manually annotate semantic roles for 3,000 chit-chat dialogues (27,198 sentences) to boost the research in this direction. Experiments show that while traditional SRL systems (even with the help of coreference resolution or rewriting) perform poorly for analyzing dialogues, modeling dialogue histories and participants greatly helps the performance, indicating that adapting SRL to conversations is very promising for universal dialogue understanding. Our initial study by applying CSRL to two mainstream conversational tasks, dialogue response generation and dialogue context rewriting, also confirms the usefulness of CSRL.
Semantic role labeling (SRL) is a task to recognize all the predicate-argument pairs of a sentence, which has been in a performance improvement bottleneck after a series of latest works were presented. This paper proposes a novel syntax-agnostic SRL
For multi-turn dialogue rewriting, the capacity of effectively modeling the linguistic knowledge in dialog context and getting rid of the noises is essential to improve its performance. Existing attentive models attend to all words without prior focu
Semantic role labeling is primarily used to identify predicates, arguments, and their semantic relationships. Due to the limitations of modeling methods and the conditions of pre-identified predicates, previous work has focused on the relationships b
Semantic role labeling (SRL) is dedicated to recognizing the semantic predicate-argument structure of a sentence. Previous studies in terms of traditional models have shown syntactic information can make remarkable contributions to SRL performance; h
Semantic role labeling (SRL), also known as shallow semantic parsing, is an important yet challenging task in NLP. Motivated by the close correlation between syntactic and semantic structures, traditional discrete-feature-based SRL approaches make he