ترغب بنشر مسار تعليمي؟ اضغط هنا

Nernst and Ettingshausen effects in the Laughlin geometry

143   0   0.0 ( 0 )
 نشر من قبل Sergei Sharapov Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ideal reversible thermodynamic cycle visualization of the Nernst effect in Laughlin geometry, excluding the kinetic contribution is proposed. The Ettingshausen effect is also treated in the fashion using the reverse cycle. The corresponding values of the off-diagonal thermoelectric coefficients are expressed through the ratio of the entropy budget per magnetic flux. Our approach enlightens the profound thermodynamic origin of the relation between the Nernst effect and magnetization currents.



قيم البحث

اقرأ أيضاً

We investigate whether there could exist topological invariants of gapped 2D materials related to dissipationless thermoelectric transport at low temperatures. We give both macroscopic and microscopic arguments showing that thermoelectric transport c oefficients vanish in the limit of zero temperature and thus topological invariants arise only from the electric Hall conductance and the thermal Hall conductance. Our arguments apply to systems with arbitrarily strong interactions. We also show that there is no analog of the Thouless pump for entropy.
We study electronic transport in graphene under the influence of a transversal magnetic field $f{B}(f{r})=B(x)f{e}_z$ with the asymptotics $B(xtopminfty)=pm B_0$, which could be realized via a folded graphene sheet in a constant magnetic field, for e xample. By solving the effective Dirac equation, we find robust modes with a finite energy gap which propagate along the fold -- where particles and holes move in opposite directions. Exciting these particle-hole pairs with incident photons would then generate a nearly perfect charge separation and thus a strong magneto-thermoelectric (Nernst-Ettingshausen) or magneto-photoelectric effect -- even at room temperature.
A simple model describing the Nernst-Ettingshausen effect (NEE) in two-component electronic liquids is formulated. The examples considered include graphite, where the normal and Dirac fermions coexist, superconductor in fluctuating regime, with coexi sting Cooper pairs and normal electrons, and the inter-stellar plasma of electrons and protons. We give a general expression for the Nernst constant and show that the origin of a giant NEE is in the strong dependence of the chemical potential on temperature in all cases.
Chiral anomaly or Adler-Bell-Jackiw anomaly in Weyl semimetals (WSMs) has a significant impact on the electron transport behaviors, leading to remarkable longitudinal or planar electrical and thermoelectric transport phenomena in the presence of elec tromagnetic gauge fields. These phenomena are consequences of the imbalanced chiral charge and energy induced by chiral anomaly in the presence of parallel electric ($mathbf{E}$) and magnetic ($mathbf{B}$) fields ($mathbf{E cdot B } eq 0$) or $(mathbf{B cdot abla }T eq 0)$ ($mathbf{ abla}T$ is the thermal gradient). We here propose another two fascinating transport properties, namely, the nonlinear planar Nernst effect and nonlinear planar thermal Hall effect induced by chiral anomaly in the presence of $mathbf{B cdot abla}T eq 0$ in WSMs. Using the semiclassical Boltzmann transport theory, we derive the analytical expressions for the chiral anomaly induced nonlinear Nernst and thermal Hall transport coefficients and also evaluate the fundamental mathematical relations among them in the nonlinear regime. The formulas we find in this current work are consistent with that predicted for the nonlinear anomalous electrical and thermoelectric effects induced by Berry curvature dipole recently. Additionally, in contrast to the recent work, by utilizing the lattice Weyl Hamiltonian with intrinsic chiral chemical potential, we find that the chiral anomaly induced nonlinear planar effects can exist even for a pair of oppositely tilted or non-tilted Weyl cones in both time reversal and inversion broken WSMs. The chiral anomaly induced nonlinear planar effects predicted here along with the related parameter dependencies are hence possible to be realized in realistic WSMs in experiment.
The Mott relation between the electrical and thermoelectric transport coefficients normally holds for phenomena involving scattering. However, the anomalous Hall effect (AHE) in ferromagnets may arise from intrinsic spin-orbit interaction. In this wo rk, we have simultaneously measured AHE and the anomalous Nernst effect (ANE) in Ga1-xMnxAs ferromagnetic semiconductor films, and observed an exceptionally large ANE at zero magnetic field. We further show that AHE and ANE share a common origin and demonstrate the validity of the Mott relation for the anomalous transport phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا