ﻻ يوجد ملخص باللغة العربية
A simple model describing the Nernst-Ettingshausen effect (NEE) in two-component electronic liquids is formulated. The examples considered include graphite, where the normal and Dirac fermions coexist, superconductor in fluctuating regime, with coexisting Cooper pairs and normal electrons, and the inter-stellar plasma of electrons and protons. We give a general expression for the Nernst constant and show that the origin of a giant NEE is in the strong dependence of the chemical potential on temperature in all cases.
We study electronic transport in graphene under the influence of a transversal magnetic field $f{B}(f{r})=B(x)f{e}_z$ with the asymptotics $B(xtopminfty)=pm B_0$, which could be realized via a folded graphene sheet in a constant magnetic field, for e
We calculate the Nernst signal directly in the phenomenological two-dimensional XY model. The obtained numerical results are consistent with the experimental observations in some high-Tc cuprate superconductors qualitatively, where the vortex Nernst
We investigate whether there could exist topological invariants of gapped 2D materials related to dissipationless thermoelectric transport at low temperatures. We give both macroscopic and microscopic arguments showing that thermoelectric transport c
The ideal reversible thermodynamic cycle visualization of the Nernst effect in Laughlin geometry, excluding the kinetic contribution is proposed. The Ettingshausen effect is also treated in the fashion using the reverse cycle. The corresponding value
We study the Nernst effect and the spin Nernst effect, that a longitudinal thermal gradient induces a transverse voltage and a spin current. A mesoscopic four-terminal cross-bar device having the Rashba spin-orbit interaction (SOI) under a perpendicu