ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunneling transport of unitary fermions across the superfluid transition

144   0   0.0 ( 0 )
 نشر من قبل Francesco Scazza
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the transport of a Fermi gas with unitarity-limited interactions across the superfluid phase transition, probing its response to a direct current (dc) drive through a tunnel junction. As the superfluid critical temperature is crossed from below, we observe the evolution from a highly nonlinear to an Ohmic conduction characteristics, associated with the critical breakdown of the Josephson dc current induced by pair condensate depletion. Moreover, we reveal a large and dominant anomalous contribution to resistive currents, which reaches its maximum at the lowest attained temperature, fostered by the tunnel coupling between the condensate and phononic Bogoliubov-Anderson excitations. Increasing the temperature, while the zeroing of supercurrents marks the transition to the normal phase, the conductance drops considerably but remains much larger than that of a normal, uncorrelated Fermi gas tunneling through the same junction. We attribute such enhanced transport to incoherent tunneling of sound modes, which remain weakly damped in the collisional hydrodynamic fluid of unpaired fermions at unitarity.



قيم البحث

اقرأ أيضاً

We present results from Monte Carlo calculations investigating the properties of the homogeneous, spin-balanced unitary Fermi gas in three dimensions. The temperature is varied across the superfluid transition allowing us to determine the temperature dependence of the chemical potential, the energy per particle and the contact density. Numerical artifacts due to finite volume and discretization are systematically studied, estimated, and reduced.
We review recent advances in experimental and theoretical understanding of spin transport in strongly interacting Fermi gases. The central new phenomenon is the observation of a lower bound on the (bare) spin diffusivity in the strongly interacting r egime. Transport bounds are of broad interest for the condensed matter community, with a conceptual similarity to observed bounds in shear viscosity and charge conductivity. We discuss the formalism of spin hydrodynamics, how dynamics are parameterized by transport coefficients, the effect of confinement, the role of scale invariance, the quasi-particle picture, and quantum critical transport. We conclude by highlighting open questions, such as precise theoretical bounds, relevance to other phases of matter, and extensions to lattice systems.
Anisotropic dipole-dipole interactions between ultracold dipolar fermions break the symmetry of the Fermi surface and thereby deform it. Here we demonstrate that such a Fermi surface deformation induces a topological phase transition -- so-called Lif shitz transition -- in the regime accessible to present-day experiments. We describe the impact of the Lifshitz transition on observable quantities such as the Fermi surface topology, the density-density correlation function, and the excitation spectrum of the system. The Lifshitz transition in ultracold atoms can be controlled by tuning the dipole orientation and -- in contrast to the transition studied in crystalline solids -- is completely interaction-driven.
542 - Shunji Tsuchiya , R. Ganesh , 2013
We study the Higgs amplitude mode in the s-wave superfluid state on the honeycomb lattice inspired by recent cold atom experiments. We consider the attractive Hubbard model and focus on the vicinity of a quantum phase transition between semi-metal an d superfluid phases. On either side of the transition, we find collective mode excitations that are stable against decay into quasiparticle-pairs. In the semi-metal phase, the collective modes have Cooperon and exciton character. These modes smoothly evolve across the quantum phase transition, and become the Anderson-Bogoliubov mode and the Higgs mode of the superfluid phase. The collective modes are accommodated within a window in the quasiparticle-pair continuum, which arises as a consequence of the linear Dirac dispersion on the honeycomb lattice, and allows for sharp collective excitations. Bragg scattering can be used to measure these excitations in cold atom experiments, providing a rare example wherein collective modes can be tracked across a quantum phase transition.
We study transport dynamics of ultracold cesium atoms in a two-dimensional optical lattice across the superfluid-Mott insulator transition based on in situ imaging. Inducing the phase transition with a lattice ramping routine expected to be locally a diabatic, we observe a global mass redistribution which requires a very long time to equilibrate, more than 100 times longer than the microscopic time scales for on-site interaction and tunneling. When the sample enters the Mott insulator regime, mass transport significantly slows down. By employing fast recombination pulses to analyze the occupancy distribution, we observe similarly slow-evolving dynamics, and a lower effective temperature at the center of the sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا