ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological feature study of slope failure process via persistent homology-based machine learning

110   0   0.0 ( 0 )
 نشر من قبل Sheng-Dong Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Using software UDEC to simulate the instability failure process of slope under seismic load, studing the dynamic response of slope failure, obtaining the deformation characteristics and displacement cloud map of slope, then analyzing the instability state of slope by using the theory of persistent homology, generates bar code map and extracts the topological characteristics of slope from bar code map. The topological characteristics corresponding to the critical state of slope instability are found, and the relationship between topological characteristics and instability evolution is established. Finally, it provides a topological research tool for slope failure prediction. The results show that the change of the longest Betti 1 bar code reflects the evolution process of the slope and the law of instability failure. Using discrete element method and persistent homology theory to study the failure characteristics of slope under external load can better understand the failure mechanism of slope, provide theoretical basis for engineering protection, and also provide a new mathematical method for slope safety design and disaster prediction research.



قيم البحث

اقرأ أيضاً

The damage characteristics of a shallow buried tunnel under multiple explosive loads is an important research issue in the design and evaluation of protective engineering. It is of great significance to develop a method for early warning of the safet y of the shallow buried features. The discrete element method is used to establish a mechanical model of the shallow buried tunnel. The South Load Equivalent Principle treats blast loads as a series of dynamic forces acting uniformly on the surface. Based on the discrete element method, the dynamic response after each blast load and the damage evolution process of the surrounding rock of the tunnel are obtained. The strength reduction method is used to obtain the surrounding rock of the tunnel. Introduce the theory of continuous homology, and use the mathematical method of continuous homology to quantitatively and qualitatively analyze the failure characteristics of the discrete element model under multiple explosive loads. The results show that the method of continuous homology can accurately reflect the topological characteristics of the surrounding rock of the tunnel The maximum one-dimensional bar code connection radius can effectively warn tunnel instability. This provides a new mathematical method for tunnel safety design and disaster prediction research.
The study of tunnel failure characteristics under the load of external explosion source is an important problem in tunnel design and protection, in particular, it is of great significance to construct an intelligent topological feature description of the tunnel failure process. The failure characteristics of tunnels under explosive loading are described by using discrete element method and persistent homology-based machine learning. Firstly, the discrete element model of shallow buried tunnel was established in the discrete element software, and the explosive load was equivalent to a series of uniformly distributed loads acting on the surface by Saint-Venant principle, and the dynamic response of the tunnel under multiple explosive loads was obtained through iterative calculation. The topological characteristics of surrounding rock is studied by persistent homology-based machine learning. The geometric, physical and interunit characteristics of the tunnel subjected to explosive loading are extracted, and the nonlinear mapping relationship between the topological quantity of persistent homology, and the failure characteristics of the surrounding rock is established, and the results of the intelligent description of the failure characteristics of the tunnel are obtained. The research shows that the length of the longest Betty 1 bar code is closely related to the stability of the tunnel, which can be used for effective early warning of the tunnel failure, and an intelligent description of the tunnel failure process can be established to provide a new idea for tunnel engineering protection.
The relationship between the macroscopic response of the slope and the macrostructure of the force chain network under the action of the metal plate was studied by the particle discrete element method and the persistent homology. The particle accumul ation model was used to simulate the instability process of slope under the continuous downward action of metal plate by the particle discrete element method. The macroscopic responses such as the total velocity vector of the two-dimensional slope deposit, the angle of the slip cracking surface when the slope is unstable, and the average velocity in the y-direction of the slope were studied. Then, the normal force chain undirected network model of the natural accumulation of slope stacking particles was constructed. Finally, the topological characteristics of the particle contact force chain network of the slope top were analyzed by the persistent homology method to obtain the barcode. Finally, the relationship between the instability evolution and the characteristics of persistent homology is established. This research provides a new method for the study of slope instability topology identification. Thus, the instability destruction of slope can be predicted effectively.
We present a novel method to explicitly incorporate topological prior knowledge into deep learning based segmentation, which is, to our knowledge, the first work to do so. Our method uses the concept of persistent homology, a tool from topological da ta analysis, to capture high-level topological characteristics of segmentation results in a way which is differentiable with respect to the pixelwise probability of being assigned to a given class. The topological prior knowledge consists of the sequence of desired Betti numbers of the segmentation. As a proof-of-concept we demonstrate our approach by applying it to the problem of left-ventricle segmentation of cardiac MR images of 500 subjects from the UK Biobank dataset, where we show that it improves segmentation performance in terms of topological correctness without sacrificing pixelwise accuracy.
We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the di fferentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in three experiments. Firstly we create a synthetic task in which handwritten MNIST digits are de-noised, and show that using this kind of topological prior knowledge in the training of the network significantly improves the quality of the de-noised digits. Secondly we perform an experiment in which the task is segmenting the myocardium of the left ventricle from cardiac magnetic resonance images. We show that the incorporation of the prior knowledge of the topology of this anatomy improves the resulting segmentations in terms of both the topological accuracy and the Dice coefficient. Thirdly, we extend the method to 3D volumes and demonstrate its performance on the task of segmenting the placenta from ultrasound data, again showing that incorporating topological priors improves performance on this challenging task. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا