ﻻ يوجد ملخص باللغة العربية
We present a novel method to explicitly incorporate topological prior knowledge into deep learning based segmentation, which is, to our knowledge, the first work to do so. Our method uses the concept of persistent homology, a tool from topological data analysis, to capture high-level topological characteristics of segmentation results in a way which is differentiable with respect to the pixelwise probability of being assigned to a given class. The topological prior knowledge consists of the sequence of desired Betti numbers of the segmentation. As a proof-of-concept we demonstrate our approach by applying it to the problem of left-ventricle segmentation of cardiac MR images of 500 subjects from the UK Biobank dataset, where we show that it improves segmentation performance in terms of topological correctness without sacrificing pixelwise accuracy.
We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the di
Multi-class segmentation of cardiac magnetic resonance (CMR) images seeks a separation of data into anatomical components with known structure and configuration. The most popular CNN-based methods are optimised using pixel wise loss functions, ignora
Image denoising is the process of removing noise from noisy images, which is an image domain transferring task, i.e., from a single or several noise level domains to a photo-realistic domain. In this paper, we propose an effective image denoising met
With respect to spatial overlap, CNN-based segmentation of short axis cardiovascular magnetic resonance (CMR) images has achieved a level of performance consistent with inter observer variation. However, conventional training procedures frequently de
We introduce Cubical Ripser for computing persistent homology of image and volume data (more precisely, weighted cubical complexes). To our best knowledge, Cubical Ripser is currently the fastest and the most memory-efficient program for computing pe