ﻻ يوجد ملخص باللغة العربية
CO is the most widely used observational tracer of molecular gas. The observable CO luminosity is translated to H_2 mass via a conversion factor, X_CO, which is a source of uncertainty and bias. Despite variations in X_CO, the empirically-determined solar neighborhood value is often applied across different galactic environments. To improve understanding of X_CO, we employ 3D magnetohydrodynamics simulations of the interstellar medium (ISM) in galactic disks with a large range of gas surface densities, allowing for varying metallicity, far-ultraviolet (FUV) radiation, and cosmic ray ionization rate (CRIR). With the TIGRESS simulation framework we model the three-phase ISM with self-consistent star formation and feedback, and post-process outputs with chemistry and radiation transfer to generate synthetic CO(1--0) and (2--1) maps. Our models reproduce the observed CO excitation temperatures, line-widths, and line ratios in nearby disk galaxies. X_CO decreases with increasing metallicity, with a power-law slope of -0.8 for the (1--0) line and -0.5 for the (2--1) line. X_CO also decreases at higher CRIR, and is insensitive to the FUV radiation. As density increases, X_CO first decreases due to increasing excitation temperature, and then increases when the emission is fully saturated. We provide fits between X_CO and observable quantities such as the line ratio, peak antenna temperature, and line brightness, which probe local gas conditions. These fits, which allow for varying beam size, may be used in observations to calibrate out systematic biases. We also provide estimates of the CO-dark H_2 fraction at different gas surface densities, observational sensitivities, and beam sizes.
CO(J=1-0) line emission is a widely used observational tracer of molecular gas, rendering essential the X_CO factor, which is applied to convert CO luminosity to H_2 mass. We use numerical simulations to study how X_CO depends on numerical resolution
We present an analysis of the relationship between the CO-H$_{2}$ conversion factor ($alpha_{rm CO}$) and total mass surface density ($Sigma_{rm tot}$) in star-forming galaxies at $z < 1.5$. Our sample, which is drawn from the IRAM Plateau de Bure HI
The nearby Hydra Cluster ($sim$50 Mpc) is an ideal laboratory to understand, in detail, the influence of the environment on the morphology and quenching of galaxies in dense environments. We study the Hydra cluster galaxies in the inner regions ($1R_
We use the EAGLE suite of cosmological hydrodynamical simulations to study how the HI content of present-day galaxies depends on their environment. We show that EAGLE reproduces observed HI mass-environment trends very well, while semi-analytic model
We present an analysis of the X-ray Active Galactic Nucleus (AGN) population in a sample of seven massive galaxy clusters in the redshift range $0.35<z<0.45$. We utilize high-quality Chandra X-ray imaging to robustly identify AGN and precisely determ