ﻻ يوجد ملخص باللغة العربية
We present an analysis of the relationship between the CO-H$_{2}$ conversion factor ($alpha_{rm CO}$) and total mass surface density ($Sigma_{rm tot}$) in star-forming galaxies at $z < 1.5$. Our sample, which is drawn from the IRAM Plateau de Bure HIgh-$z$ Blue Sequence Survey (PHIBSS) and the CO Legacy Database for GASS (COLD GASS), includes normal, massive star-forming galaxies that dominate the evolution of the cosmic star formation rate (SFR) at this epoch and probe the $Sigma_{rm tot}$ regime where the strongest variation in $alpha_{rm CO}$ is observed. We constrain $alpha_{rm CO}$ via existing CO observations, measurements of the star formation rate, and an assumed molecular gas depletion time ($t_{rm dep}$=$M_{rm gas}$/SFR) --- the latter two of which establish the total molecular gas mass independent of the observed CO luminosity. For a broad range of adopted depletion times, we find that $alpha_{rm CO}$ is independent of total mass surface density, with little deviation from the canonical Milky Way value. This runs contrary to a scenario in which $alpha_{rm CO}$ decreases as surface density increases within the extended clouds of molecular gas that potentially fuel clumps of star formation in $zsim1$ galaxies, similar to those observed in local ULIRGs. Instead, our results suggest that molecular gas, both at $zsim0$ and $zsim1$, is primarily in the form of self-gravitating molecular clouds. While CO observations suggest a factor of $sim3$ reduction in the average molecular gas depletion time between $z sim 0$ and $zsim1$, we find that, for typical galaxies, the structure of molecular gas and the process of star formation at $z sim 1$ is otherwise remarkably similar to that observed in local star-forming systems.
We investigate the relationship between the dust-to-metals ratio (D/M) and the local interstellar medium environment at ~2 kpc resolution in five nearby galaxies: IC342, M31, M33, M101, and NGC628. A modified blackbody model with a broken power-law e
Carbon monoxide (CO) provides crucial information about the molecular gas properties of galaxies. While $^{12}$CO has been targeted extensively, isotopologues such as $^{13}$CO have the advantage of being less optically thick and observations have re
CO is the most widely used observational tracer of molecular gas. The observable CO luminosity is translated to H_2 mass via a conversion factor, X_CO, which is a source of uncertainty and bias. Despite variations in X_CO, the empirically-determined
We use the first systematic samples of CO millimeter emission in z>1 main-sequence star forming galaxies (SFGs) to study the metallicity dependence of the conversion factor {alpha}CO, from CO line luminosity to molecular gas mass. The molecular gas d
One of the key unanswered questions in the study of galaxy evolution is what physical processes inside galaxies drive the changes in the SFRs in individual galaxies that, taken together, produce the large decline in the global star-formation rate den