ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating institutional influence on graduate program admissions by modelling physics GRE cut-off scores

106   0   0.0 ( 0 )
 نشر من قبل Nils Johannes Mikkelsen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite limiting access to applicants from underrepresented racial and ethnic groups, the practice of using hard or soft GRE cut-off scores in physics graduate program admissions is still a popular method for reducing the pool of applicants. The present study considers whether the undergraduate institutions of applicants have any influence on the admissions process by modelling a physics GRE cut-off score with application data from admissions offices of five universities. Two distinct approaches based on inferential and predictive modelling are conducted. While there is some disagreement regarding the relative importance between features, the two approaches largely agree that including institutional information significantly aids the analysis. Both models identify cases where the institutional effects are comparable to factors of known importance such as gender and undergraduate GPA. As the results are stable across many cut-off scores, we advocate against the practice of employing physics GRE cut-off scores in admissions.



قيم البحث

اقرأ أيضاً

The Physics GRE is currently a required element of the graduate admissions process in nearly all U.S. astronomy programs; however, its predictive power and utility as a means of selecting successful applicants has never been examined. We circulated a short questionnaire to 271 people who have held U.S. prize postdoctoral fellowships in astrophysics between 2010-2015, asking them to report their Physics GRE scores (this should not in any way be interpreted as a belief that a prize fellowship is the best or only metric of success in astronomy). The response rate was 64%, and the responding sample is unbiased with respect to the overall gender distribution of prize fellows. The responses reveal that the Physics GRE scores of prize fellows do not adhere to any minimum percentile score and show no statistically significant correlation with the number of first author papers published. As an example, a Physics GRE percentile cutoff of 60% would have eliminated 44% of 2010-2015 U.S. prize postdoctoral fellows, including 60% of the female fellows. From these data, we find no evidence that the Physics GRE can be used as an effective predictor of success either in or beyond graduate school.
374 - Michael B. Weissman 2019
A recent paper in Sci. Adv. by Miller et al. concludes that GREs do not help predict whether physics grad students will get Ph.D.s. The paper makes numerous elementary statistics errors, including introduction of unnecessary collider-like stratificat ion bias, variance inflation by collinearity and range restriction, omission of needed data (some subsequently provided), a peculiar choice of null hypothesis on subgroups, blurring the distinction between failure to reject a null and accepting a null, and an extraordinary procedure for radically inflating confidence intervals in a figure. Release of results of simpler models, e.g. without unnecessary stratification, would fix some key problems. The paper exhibits exactly the sort of research techniques which we should be teaching students to avoid.
We describe a course designed to help future educators build an integrated understanding of the different elements of physics education research (PER), including: research into student learning, content knowledge from the perspective of how it is lea rned, and reform-based curricula together with evidence of their effectiveness. Course elements include equal parts of studying physics through proven curricula and discussion of research results in the context of the PER literature. We provide examples of the course content and structure as well as representative examples of student learning in the class.
In this study, we investigated the employment status of recent University of Ottawa physics MSc and PhD graduates, finding that 94% of graduates are either employed or pursuing further physics education one year post-graduation. Our database was popu lated from the public online repository of MSc and PhD theses submitted between the academic years of 2011 to 2019, with employment information collected in 2020 from the professional social media platform LinkedIn. Our results highlight that graduates primarily find employment quickly and in their field of study, with most graduates employed in either academia or physics-related industries. We also found that a significant portion of employed graduates, 20%, find employment in non-traditional physics careers, such as business management and healthcare. Graduates with careers in academia tend to have lower online connectivity compared to graduates with careers in industry or non-traditional fields, suggesting a greater importance for online networking for students interested in non-academic careers.
We study high-order harmonic generation (HHG) in model atoms driven by plasmonic-enhanced fields. These fields result from the illumination of plasmonic nanostructures by few-cycle laser pulses. We demonstrate that the spatial inhomogeneous character of the laser electric field, in a form of Gaussian-shaped functions, leads to an unexpected relationship between the HHG cutoff and the laser wavelength. Precise description of the spatial form of the plasmonic-enhanced field allows us to predict this relationship. We combine the numerical solutions of the time-dependent Schrodinger equation (TDSE) with the plasmonic-enhanced electric fields obtained from 3D finite element simulations. We additionally employ classical simulations to supplement the TDSE outcomes and characterize the extended HHG spectra by means of their associated electron trajectories. A proper definition of the spatially inhomogeneous laser electric field is instrumental to accurately describe the underlying physics of HHG driven by plasmonic-enhanced fields. This characterization opens new perspectives for HHG control with various experimental nano-setups
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا