ﻻ يوجد ملخص باللغة العربية
The problem of $A$ privately transmitting information to $B$ by a public announcement overheard by an eavesdropper $C$ is considered. To do so by a deterministic protocol, their inputs must be correlated. Dependent inputs are represented using a deck of cards. There is a publicly known signature $(a,b,c)$, where $n = a + b + c + r$, and $A$ gets $a$ cards, $B$ gets $b$ cards, and $C$ gets $c$ cards, out of the deck of $n$ cards. Using a deterministic protocol, $A$ decides its announcement based on her hand. Using techniques from coding theory, Johnson graphs, and additive number theory, a novel perspective inspired by distributed computing theory is provided, to analyze the amount of information that $A$ needs to send, while preventing $C$ from learning a single card of her hand. In one extreme, the generalized Russian cards problem, $B$ wants to learn all of $A$s cards, and in the other, $B$ wishes to learn something about $A$s hand.
Information leakage rate is an intuitive metric that reflects the level of security in a wireless communication system, however, there are few studies taking it into consideration. Existing work on information leakage rate has two major limitations d
We consider a problem, which we call secure grouping, of dividing a number of parties into some subsets (groups) in the following manner: Each party has to know the other members of his/her group, while he/she may not know anything about how the rema
We present the first formal mathematical presentation of the generalized Russian cards problem, and provide rigorous security definitions that capture both basic and extend
In the generalized Russian cards problem, we have a card deck $X$ of $n$ cards and three participants, Alice, Bob, and Cathy, dealt $a$, $b$, and $c$ cards, respectively. Once the cards are dealt, Alice and Bob wish to privately communicate their han
Cloud service providers offer a low-cost and convenient solution to host unstructured data. However, cloud services act as third-party solutions and do not provide control of the data to users. This has raised security and privacy concerns for many o