ﻻ يوجد ملخص باللغة العربية
We consider a problem, which we call secure grouping, of dividing a number of parties into some subsets (groups) in the following manner: Each party has to know the other members of his/her group, while he/she may not know anything about how the remaining parties are divided (except for certain public predetermined constraints, such as the number of parties in each group). In this paper, we construct an information-theoretically secure protocol using a deck of physical cards to solve the problem, which is jointly executable by the parties themselves without a trusted third party. Despite the non-triviality and the potential usefulness of the secure grouping, our proposed protocol is fairly simple to describe and execute. Our protocol is based on algebraic properties of conjugate permutations. A key ingredient of our protocol is our new techniques to apply multiplication and inverse operations to hidden permutations (i.e., those encoded by using face-down cards), which would be of independent interest and would have various potential applications.
The problem of $A$ privately transmitting information to $B$ by a public announcement overheard by an eavesdropper $C$ is considered. To do so by a deterministic protocol, their inputs must be correlated. Dependent inputs are represented using a deck
In the generalized Russian cards problem, we have a card deck $X$ of $n$ cards and three participants, Alice, Bob, and Cathy, dealt $a$, $b$, and $c$ cards, respectively. Once the cards are dealt, Alice and Bob wish to privately communicate their han
A protocol for two-party secure function evaluation (2P-SFE) aims to allow the parties to learn the output of function $f$ of their private inputs, while leaking nothing more. In a sense, such a protocol realizes a trusted oracle that computes $f$ an
Secure Function Evaluation (SFE) has received recent attention due to the massive collection and mining of personal data, but remains impractical due to its large computational cost. Garbled Circuits (GC) is a protocol for implementing SFE which can
We discuss a procedure, which should be called Lenstras fix, for producing secure RSA moduli even when the random number generation is very poor.