ﻻ يوجد ملخص باللغة العربية
Long-range Rydberg interactions, in combination with electromagnetically induced transparency (EIT), give rise to strongly interacting photons where the strength, sign, and form of the interactions are widely tunable and controllable. Such control can be applied to both coherent and dissipative interactions, which provides the potential to generate novel few-photon states. Recently it has been shown that Rydberg-EIT is a rare system in which three-body interactions can be as strong or stronger than two-body interactions. In this work, we study a three-body scattering loss for Rydberg-EIT in a wide regime of single and two-photon detunings. Our numerical simulations of the full three-body wavefunction and analytical estimates based on Fermis Golden Rule strongly suggest that the observed features in the outgoing photonic correlations are caused by the resonant enhancement of the three-body losses.
Trapped Rydberg ions represent a flexible platform for quantum simulation and information processing which combines a high degree of control over electronic and vibrational degrees of freedom. The possibility to individually excite ions to high-lying
We demonstrate a three step laser stabilisation scheme for excitation to nP and nF Rydberg states in 85Rb, with all three lasers stabilised using active feedback to independent Rb vapour cells. The setup allows stabilisation to the Rydberg states 36P
We establish a novel approach to probing spatially resolved multi-time correlation functions of interacting many-body systems, with scalable experimental overhead. Specifically, designing nonlinear measurement protocols for multidimensional spectra i
We report on the experimental observation of non-trivial three-photon correlations imprinted onto initially uncorrelated photons through interaction with a single Rydberg superatom. Exploiting the Rydberg blockade mechanism, we turn a cold atomic clo
We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where