ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Spectroscopy of Controllable Many-Body Quantum Systems

160   0   0.0 ( 0 )
 نشر من قبل Manuel Gessner
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish a novel approach to probing spatially resolved multi-time correlation functions of interacting many-body systems, with scalable experimental overhead. Specifically, designing nonlinear measurement protocols for multidimensional spectra in a chain of trapped ions with single-site addressability enables us, e.g., to distinguish coherent from incoherent transport processes, to quantify potential anharmonicities, and to identify decoherence-free subspaces.



قيم البحث

اقرأ أيضاً

319 - J. Eisert , M. Friesdorf , 2014
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instance s of quantum simulations. This article provides an overview on the progress in understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hypothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum simulations.
We study coherent superpositions of clockwise and anti-clockwise rotating intermediate complexes with overlapping resonances formed in bimolecular chemical reactions. Disintegration of such complexes represents an analog of famous double-slit experim ent. The time for disappearance of the interference fringes is estimated from heuristic arguments related to fingerprints of chaotic dynamics of a classical counterpart of the coherently rotating complex. Validity of this estimate is confirmed numerically for the H+D$_2$ chemical reaction. Thus we demonstrate the quantum--classical transition in temporal behavior of highly excited quantum many-body systems in the absence of external noise and coupling to an environment.
Quantum coherence quantifies the amount of superposition a quantum state can have in a given basis. Since there is a difference in the structure of eigenstates of the ergodic and many-body localized systems, we expect them also to differ in terms of their coherences in a given basis. Here, we numerically calculate different measures of quantum coherence in the excited eigenstates of an interacting disordered Hamiltonian as a function of the disorder. We show that quantum coherence can be used as an order parameter to detect the well-studied ergodic to many-body-localized phase transition. We also perform quantum quench studies to distinguish the behavior of coherence in thermalized and localized phases. We then present a protocol to calculate measurement-based localizable coherence to investigate the thermal and many-body localized phases. The protocol allows one to investigate quantum correlations experimentally in a non-destructive way, in contrast to measures that require tracing out a subsystem, which always destroys coherence and correlation.
We study the problem of learning the Hamiltonian of a quantum many-body system given samples from its Gibbs (thermal) state. The classical analog of this problem, known as learning graphical models or Boltzmann machines, is a well-studied question in machine learning and statistics. In this work, we give the first sample-efficient algorithm for the quantum Hamiltonian learning problem. In particular, we prove that polynomially many samples in the number of particles (qudits) are necessary and sufficient for learning the parameters of a spatially local Hamiltonian in l_2-norm. Our main contribution is in establishing the strong convexity of the log-partition function of quantum many-body systems, which along with the maximum entropy estimation yields our sample-efficient algorithm. Classically, the strong convexity for partition functions follows from the Markov property of Gibbs distributions. This is, however, known to be violated in its exact form in the quantum case. We introduce several new ideas to obtain an unconditional result that avoids relying on the Markov property of quantum systems, at the cost of a slightly weaker bound. In particular, we prove a lower bound on the variance of quasi-local operators with respect to the Gibbs state, which might be of independent interest. Our work paves the way toward a more rigorous application of machine learning techniques to quantum many-body problems.
136 - V. A. Golovko 2015
A hierarchy of equations for equilibrium reduced density matrices obtained earlier is used to consider systems of spinless bosons bound by forces of gravity alone. The systems are assumed to be at absolute zero of temperature under conditions of Bose condensation. In this case, a peculiar interplay of quantum effects and of very weak gravitational interaction between microparticles occurs. As a result, there can form spatially-bounded equilibrium structures macroscopic in size, both immobile and rotating. The size of a structure is inversely related to the number of particles in the structure. When the number of particles is relatively small the size can be enormous, whereas if this numbder equals Avogadros number the radius of the structure is about 30 cm in the case that the structure consists of hydrogen atoms. The rotating objects have the form of rings and exhibit superfluidity. An atmosphere that can be captured by tiny celestial bodies from the ambient medium is considered too. The thickness of the atmosphere decreases as its mass increases. If short-range intermolecular forces are taken into account, the results obtained hold for excited states whose lifetime can however be very long. The results of the paper can be utilized for explaining the first stage of formation of celestial bodies from interstellar and even intergalactic gases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا