ﻻ يوجد ملخص باللغة العربية
We study time-harmonic scattering in $mathbb{R}^n$ ($n=2,3$) by a planar screen (a crack in the context of linear elasticity), assumed to be a non-empty bounded relatively open subset $Gamma$ of the hyperplane $mathbb{R}^{n-1}times {0}$, on which impedance (Robin) boundary conditions are imposed. In contrast to previous studies, $Gamma$ can have arbitrarily rough (possibly fractal) boundary. To obtain well-posedness for such $Gamma$ we show how the standard impedance boundary value problem and its associated system of boundary integral equations must be supplemented with additional solution regularity conditions, which hold automatically when $partialGamma$ is smooth. We show that the associated system of boundary integral operators is compactly perturbed coercive in an appropriate function space setting, strengthening previous results. This permits the use of Mosco convergence to prove convergence of boundary element approximations on smoother prefractal screens to the limiting solution on a fractal screen. We present accompanying numerical results, validating our theoretical convergence results, for three-dimensional scattering by a Koch snowflake and a square snowflake.
We describe some recent advances in the numerical solution of acoustic scattering problems. A major focus of the paper is the efficient solution of high frequency scattering problems via hybrid numerical-asymptotic boundary element methods. We also m
We present a solution for the scattered field caused by an incident wave interacting with an infinite cascade of blades with complex boundary conditions. This extends previous studies by allowing the blades to be compliant, porous or satisfying a gen
Collocation boundary element methods for integral equations are easier to implement than Galerkin methods because the elements of the discretization matrix are given by lower-dimensional integrals. For that same reason, the matrix assembly also requi
In this article, global stabilization results for the two dimensional (2D) viscous Burgers equation, that is, convergence of unsteady solution to its constant steady state solution with any initial data, are established using a nonlinear Neumann boun
In this paper the discrete eigenvalues of elliptic second order differential operators in $L^2(mathbb{R}^n)$, $n in mathbb{N}$, with singular $delta$- and $delta$-interactions are studied. We show the self-adjointness of these operators and derive eq