ﻻ يوجد ملخص باللغة العربية
Collocation boundary element methods for integral equations are easier to implement than Galerkin methods because the elements of the discretization matrix are given by lower-dimensional integrals. For that same reason, the matrix assembly also requires fewer computations. However, collocation methods typically yield slower convergence rates and less robustness, compared to Galerkin methods. We explore the extent to which oversampled collocation can improve both robustness and convergence rates. We show that in some cases convergence rates can actually be higher than the corresponding Galerkin method, although this requires oversampling at a faster than linear rate. In most cases of practical interest, oversampling at least lowers the error by a constant factor. This can still be a substantial improvement: we analyze an example where linear oversampling by a constant factor $J$ (leading to a rectangular system of size $JN times N$) improves the error at a cubic rate in the constant $J$. Furthermore, the oversampled collocation method is much less affected by a poor choice of collocation points, as we show how oversampling can lead to guaranteed convergence. Numerical experiments are included for the two-dimensional Helmholtz equation.
In this paper, we examine the effectiveness of classic multiscale finite element method (MsFEM) (Hou and Wu, 1997; Hou et al., 1999) for mixed Dirichlet-Neumann, Robin and hemivariational inequality boundary problems. Constructing so-called boundary
A Sinc-collocation method has been proposed by Stenger, and he also gave theoretical analysis of the method in the case of a `scalar equation. This paper extends the theoretical results to the case of a `system of equations. Furthermore, this paper p
In this paper we discuss a hybridised method for FEM-BEM coupling. The coupling from both sides use a Nitsche type approach to couple to the trace variable. This leads to a formulation that is robust and flexible with respect to approximation spaces
We design and analyze a coupling of a discontinuous Galerkin finite element method with a boundary element method to solve the Helmholtz equation with variable coefficients in three dimensions. The coupling is realized with a mortar variable that is
A number of non-standard finite element methods have been proposed in recent years, each of which derives from a specific class of PDE-constrained norm minimization problems. The most notable examples are $mathcal{L}mathcal{L}^*$ methods. In this wor