ﻻ يوجد ملخص باللغة العربية
For some deterministic nonlinear PDEs on the torus whose solutions may blow up in finite time, we show that, under suitable conditions on the nonlinear term, the blow-up is delayed by multiplicative noise of transport type in a certain scaling limit. The main result is applied to the 3D Keller-Segel, 3D Fisher-KPP and 2D Kuramoto-Sivashinsky equations, yielding long-time existence for large initial data with high probability.
We are concerned with the multi-bubble blow-up solutions to rough nonlinear Schrodinger equations in the focusing mass-critical case. In both dimensions one and two, we construct the finite time multi-bubble solutions, which concentrate at $K$ distin
We extend a model of positive feedback and contagion in large mean-field systems, by introducing a common source of noise driven by Brownian motion. Although the driving dynamics are continuous, the positive feedback effect can lead to `blow-up pheno
The aim of this paper is to analyze a model for chemotaxis based on a local sensing mechanism instead of the gradient sensing mechanism used in the celebrated minimal Keller-Segel model. The model we study has the same entropy as the minimal Keller-S
We study distribution dependent stochastic differential equation driven by a continuous process, without any specification on its law, following the approach initiated in [16]. We provide several criteria for existence and uniqueness of solutions whi
We establish finite time extinction with probability one for weak solutions of the Cauchy-Dirichlet problem for the 1D stochastic porous medium equation with Stratonovich transport noise and compactly supported smooth initial datum. Heuristically, th