ترغب بنشر مسار تعليمي؟ اضغط هنا

Delayed blow-up by transport noise

191   0   0.0 ( 0 )
 نشر من قبل Dejun Luo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For some deterministic nonlinear PDEs on the torus whose solutions may blow up in finite time, we show that, under suitable conditions on the nonlinear term, the blow-up is delayed by multiplicative noise of transport type in a certain scaling limit. The main result is applied to the 3D Keller-Segel, 3D Fisher-KPP and 2D Kuramoto-Sivashinsky equations, yielding long-time existence for large initial data with high probability.



قيم البحث

اقرأ أيضاً

98 - Yiming Su , Deng Zhang 2020
We are concerned with the multi-bubble blow-up solutions to rough nonlinear Schrodinger equations in the focusing mass-critical case. In both dimensions one and two, we construct the finite time multi-bubble solutions, which concentrate at $K$ distin ct points, $1leq K<infty$, and behave asymptotically like a sum of pseudo-conformal blow-up solutions in the pseudo-conformal space $Sigma$ near the blow-up time. The upper bound of the asymptotic behavior is closely related to the flatness of noise at blow-up points. Moreover, we prove the conditional uniqueness of multi-bubble solutions in the case where the asymptotic behavior in the energy space $H^1$ is of the order $(T-t)^{3+zeta}$, $zeta>0$. These results are also obtained for nonlinear Schrodinger equations with lower order perturbations, particularly, in the absence of the classical pseudo-conformal symmetry and the conversation law of energy. The existence results are applicable to the canonical deterministic nonlinear Schrodinger equation and complement the previous work [43]. The conditional uniqueness results are new in both the stochastic and deterministic case.
We extend a model of positive feedback and contagion in large mean-field systems, by introducing a common source of noise driven by Brownian motion. Although the driving dynamics are continuous, the positive feedback effect can lead to `blow-up pheno mena whereby solutions develop jump-discontinuities. Our main results are twofold and concern the conditional McKean--Vlasov formulation of the model. First and foremost, we show that there are global solutions to this McKean--Vlasov problem, which can be realised as limit points of a motivating particle system with common noise. Furthermore, we derive results on the occurrence of blow-ups, thereby showing how these events can be triggered or prevented by the pathwise realisations of the common noise.
The aim of this paper is to analyze a model for chemotaxis based on a local sensing mechanism instead of the gradient sensing mechanism used in the celebrated minimal Keller-Segel model. The model we study has the same entropy as the minimal Keller-S egel model, but a different dynamics to minimize this entropy. Consequently, the conditions on the mass for the existence of stationary solutions or blow-up are the same, however we make the interesting observation that with the local sensing mechanism the blow-up in the case of supercritical mass is delayed to infinite time. Our observation is made rigorous from a mathematical point via a proof of global existence of weak solutions for arbitrary large masses and space dimension. The key difference of our model to the minimal Keller-Segel model is that the structure of the equation allows for a duality estimate that implies a bound on the $(H^1)$-norm of the solutions, which can only grow with a square-root law in time. This additional $(H^1)$-bound implies a lower bound on the entropy, which contrasts markedly with the minimal Keller-Segel model for which it is unbounded from below in the supercritical case. Besides, regularity and uniqueness of solutions are also studied.
We study distribution dependent stochastic differential equation driven by a continuous process, without any specification on its law, following the approach initiated in [16]. We provide several criteria for existence and uniqueness of solutions whi ch go beyond the classical globally Lipschitz setting. In particular we show well-posedness of the equation, as well as almost sure convergence of the associated particle system, for drifts satisfying either Osgood-continuity, monotonicity, local Lipschitz or Sobolev differentiability type assumptions.
131 - Sebastian Hensel 2020
We establish finite time extinction with probability one for weak solutions of the Cauchy-Dirichlet problem for the 1D stochastic porous medium equation with Stratonovich transport noise and compactly supported smooth initial datum. Heuristically, th is is expected to hold because Brownian motion has average spread rate $O(t^frac{1}{2})$ whereas the support of solutions to the deterministic PME grows only with rate $O(t^{frac{1}{m{+}1}})$. The rigorous proof relies on a contraction principle up to time-dependent shift for Wong-Zakai type approximations, the transformation to a deterministic PME with two copies of a Brownian path as the lateral boundary, and techniques from the theory of viscosity solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا