ترغب بنشر مسار تعليمي؟ اضغط هنا

Image quality enhancement in wireless capsule endoscopy with adaptive fraction gamma transformation and unsharp masking filter

140   0   0.0 ( 0 )
 نشر من قبل Morteza Heidari
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English
 تأليف Rezvan Ezatian




اسأل ChatGPT حول البحث

Wireless Capsule Endoscopy (WCE) presented in 2001 as one of the key approaches to observe the entire gastrointestinal (GI) tract, generally the small bowels. It has been used to detect diseases in the gastrointestinal tract. Endoscopic image analysis is still a required field with many open problems. The quality of many images it produced is rather unacceptable due to the nature of this imaging system, which causes some issues to prognosticate by physicians and computer-aided diagnosis. In this paper, a novel technique is proposed to improve the quality of images captured by the WCE. More specifically, it enhanced the brightness, contrast, and preserve the color information while reducing its computational complexity. Furthermore, the experimental results of PSNR and SSIM confirm that the error rate in this method is near to the ground and negligible. Moreover, the proposed method improves intensity restricted average local entropy (IRMLE) by 22%, color enhancement factor (CEF) by 10%, and can keep the lightness of image effectively. The performances of our method have better visual quality and objective assessments in compare to the state-of-art methods.



قيم البحث

اقرأ أيضاً

Deep learning in gastrointestinal endoscopy can assist to improve clinical performance and be helpful to assess lesions more accurately. To this extent, semantic segmentation methods that can perform automated real-time delineation of a region-of-int erest, e.g., boundary identification of cancer or precancerous lesions, can benefit both diagnosis and interventions. However, accurate and real-time segmentation of endoscopic images is extremely challenging due to its high operator dependence and high-definition image quality. To utilize automated methods in clinical settings, it is crucial to design lightweight models with low latency such that they can be integrated with low-end endoscope hardware devices. In this work, we propose NanoNet, a novel architecture for the segmentation of video capsule endoscopy and colonoscopy images. Our proposed architecture allows real-time performance and has higher segmentation accuracy compared to other more complex ones. We use video capsule endoscopy and standard colonoscopy datasets with polyps, and a dataset consisting of endoscopy biopsies and surgical instruments, to evaluate the effectiveness of our approach. Our experiments demonstrate the increased performance of our architecture in terms of a trade-off between model complexity, speed, model parameters, and metric performances. Moreover, the resulting model size is relatively tiny, with only nearly 36,000 parameters compared to traditional deep learning approaches having millions of parameters.
Wireless Capsule Endoscopy (WCE) is a relatively new technology to record the entire GI trace, in vivo. The large amounts of frames captured during an examination cause difficulties for physicians to review all these frames. The need for reducing the reviewing time using some intelligent methods has been a challenge. Polyps are considered as growing tissues on the surface of intestinal tract not inside of an organ. Most polyps are not cancerous, but if one becomes larger than a centimeter, it can turn into cancer by great chance. The WCE frames provide the early stage possibility for detection of polyps. Here, the application of simple linear iterative clustering (SLIC) superpixel for segmentation of polyps in WCE frames is evaluated. Different SLIC superpixel numbers are examined to find the highest sensitivity for detection of polyps. The SLIC superpixel segmentation is promising to improve the results of previous studies. Finally, the superpixels were classified using a support vector machine (SVM) by extracting some texture and color features. The classification results showed a sensitivity of 91%.
In this work, we aim to learn an unpaired image enhancement model, which can enrich low-quality images with the characteristics of high-quality images provided by users. We propose a quality attention generative adversarial network (QAGAN) trained on unpaired data based on the bidirectional Generative Adversarial Network (GAN) embedded with a quality attention module (QAM). The key novelty of the proposed QAGAN lies in the injected QAM for the generator such that it learns domain-relevant quality attention directly from the two domains. More specifically, the proposed QAM allows the generator to effectively select semantic-related characteristics from the spatial-wise and adaptively incorporate style-related attributes from the channel-wise, respectively. Therefore, in our proposed QAGAN, not only discriminators but also the generator can directly access both domains which significantly facilitates the generator to learn the mapping function. Extensive experimental results show that, compared with the state-of-the-art methods based on unpaired learning, our proposed method achieves better performance in both objective and subjective evaluations.
Studying animal locomotion improves our understanding of motor control and aids in the treatment of motor impairment. Mice are a premier model of human disease and are the model system of choice for much of basic neuroscience. High frame rates (250 H z) are needed to quantify the kinematics of these running rodents. Manual tracking, especially for multiple markers, becomes time-consuming and impossible. Therefore, an automated method is necessary. We propose a method to track the paws of the animal in the following manner: first, segmenting all the possible paws based on color; second, classifying the segmented objects using a support vector machine (SVM) and neural network (NN); third, classifying the objects using the kinematic features of the running animal, coupled with texture features from earlier frames; and finally, detecting and handling collisions to assure the correctness of labelled paws. The proposed method is validated in sixty 1,000 frame video sequences (4 seconds) captured by four cameras from five mice. The total sensitivity for tracking of the front and hind paw is 99.70% using the SVM classifier and 99.76% using the NN classifier. In addition, we show the feasibility of 3D reconstruction using the four camera system.
Deep neural networks for image quality enhancement typically need large quantities of highly-curated training data comprising pairs of low-quality images and their corresponding high-quality images. While high-quality image acquisition is typically e xpensive and time-consuming, medium-quality images are faster to acquire, at lower equipment costs, and available in larger quantities. Thus, we propose a novel generative adversarial network (GAN) that can leverage training data at multiple levels of quality (e.g., high and medium quality) to improve performance while limiting costs of data curation. We apply our mixed-supervision GAN to (i) super-resolve histopathology images and (ii) enhance laparoscopy images by combining super-resolution and surgical smoke removal. Results on large clinical and pre-clinical datasets show the benefits of our mixed-supervision GAN over the state of the art.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا