ترغب بنشر مسار تعليمي؟ اضغط هنا

Belief propagation for networks with loops

81   0   0.0 ( 0 )
 نشر من قبل Alec Kirkley
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Belief propagation is a widely used message passing method for the solution of probabilistic models on networks such as epidemic models, spin models, and Bayesian graphical models, but it suffers from the serious shortcoming that it works poorly in the common case of networks that contain short loops. Here we provide a solution to this long-standing problem, deriving a belief propagation method that allows for fast calculation of probability distributions in systems with short loops, potentially with high density, as well as giving expressions for the entropy and partition function, which are notoriously difficult quantities to compute. Using the Ising model as an example, we show that our approach gives excellent results on both real and synthetic networks, improving significantly on standard message passing methods. We also discuss potential applications of our method to a variety of other problems.



قيم البحث

اقرأ أيضاً

107 - Michael Chertkov 2008
It is well known that an arbitrary graphical model of statistical inference defined on a tree, i.e. on a graph without loops, is solved exactly and efficiently by an iterative Belief Propagation (BP) algorithm convergent to unique minimum of the so-c alled Bethe free energy functional. For a general graphical model on a loopy graph the functional may show multiple minima, the iterative BP algorithm may converge to one of the minima or may not converge at all, and the global minimum of the Bethe free energy functional is not guaranteed to correspond to the optimal Maximum-Likelihood (ML) solution in the zero-temperature limit. However, there are exceptions to this general rule, discussed in cite{05KW} and cite{08BSS} in two different contexts, where zero-temperature version of the BP algorithm finds ML solution for special models on graphs with loops. These two models share a key feature: their ML solutions can be found by an efficient Linear Programming (LP) algorithm with a Totally-Uni-Modular (TUM) matrix of constraints. Generalizing the two models we consider a class of graphical models reducible in the zero temperature limit to LP with TUM constraints. Assuming that a gedanken algorithm, g-BP, funding the global minimum of the Bethe free energy is available we show that in the limit of zero temperature g-BP outputs the ML solution. Our consideration is based on equivalence established between gapless Linear Programming (LP) relaxation of the graphical model in the $Tto 0$ limit and respective LP version of the Bethe-Free energy minimization.
The community detection problem requires to cluster the nodes of a network into a small number of well-connected communities. There has been substantial recent progress in characterizing the fundamental statistical limits of community detection under simple stochastic block models. However, in real-world applications, the network structure is typically dynamic, with nodes that join over time. In this setting, we would like a detection algorithm to perform only a limited number of updates at each node arrival. While standard voting approaches satisfy this constraint, it is unclear whether they exploit the network information optimally. We introduce a simple model for networks growing over time which we refer to as streaming stochastic block model (StSBM). Within this model, we prove that voting algorithms have fundamental limitations. We also develop a streaming belief-propagation (StreamBP) approach, for which we prove optimality in certain regimes. We validate our theoretical findings on synthetic and real data.
We study several bayesian inference problems for irreversible stochastic epidemic models on networks from a statistical physics viewpoint. We derive equations which allow to accurately compute the posterior distribution of the time evolution of the s tate of each node given some observations. At difference with most existing methods, we allow very general observation models, including unobserved nodes, state observations made at different or unknown times, and observations of infection times, possibly mixed together. Our method, which is based on the Belief Propagation algorithm, is efficient, naturally distributed, and exact on trees. As a particular case, we consider the problem of finding the zero patient of a SIR or SI epidemic given a snapshot of the state of the network at a later unknown time. Numerical simulations show that our method outperforms previous ones on both synthetic and real networks, often by a very large margin.
143 - F. L. Metz , I. Neri , D. Bolle 2011
We derive exact equations that determine the spectra of undirected and directed sparsely connected regular graphs containing loops of arbitrary length. The implications of our results to the structural and dynamical properties of networks are discuss ed by showing how loops influence the size of the spectral gap and the propensity for synchronization. Analytical formulas for the spectrum are obtained for specific length of the loops.
Learned neural solvers have successfully been used to solve combinatorial optimization and decision problems. More general counting variants of these problems, however, are still largely solved with hand-crafted solvers. To bridge this gap, we introd uce belief propagation neural networks (BPNNs), a class of parameterized operators that operate on factor graphs and generalize Belief Propagation (BP). In its strictest form, a BPNN layer (BPNN-D) is a learned iterative operator that provably maintains many of the desirable properties of BP for any choice of the parameters. Empirically, we show that by training BPNN-D learns to perform the task better than the original BP: it converges 1.7x faster on Ising models while providing tighter bounds. On challenging model counting problems, BPNNs compute estimates 100s of times faster than state-of-the-art handcrafted methods, while returning an estimate of comparable quality.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا