ﻻ يوجد ملخص باللغة العربية
It is well known that an arbitrary graphical model of statistical inference defined on a tree, i.e. on a graph without loops, is solved exactly and efficiently by an iterative Belief Propagation (BP) algorithm convergent to unique minimum of the so-called Bethe free energy functional. For a general graphical model on a loopy graph the functional may show multiple minima, the iterative BP algorithm may converge to one of the minima or may not converge at all, and the global minimum of the Bethe free energy functional is not guaranteed to correspond to the optimal Maximum-Likelihood (ML) solution in the zero-temperature limit. However, there are exceptions to this general rule, discussed in cite{05KW} and cite{08BSS} in two different contexts, where zero-temperature version of the BP algorithm finds ML solution for special models on graphs with loops. These two models share a key feature: their ML solutions can be found by an efficient Linear Programming (LP) algorithm with a Totally-Uni-Modular (TUM) matrix of constraints. Generalizing the two models we consider a class of graphical models reducible in the zero temperature limit to LP with TUM constraints. Assuming that a gedanken algorithm, g-BP, funding the global minimum of the Bethe free energy is available we show that in the limit of zero temperature g-BP outputs the ML solution. Our consideration is based on equivalence established between gapless Linear Programming (LP) relaxation of the graphical model in the $Tto 0$ limit and respective LP version of the Bethe-Free energy minimization.
Belief propagation is a widely used message passing method for the solution of probabilistic models on networks such as epidemic models, spin models, and Bayesian graphical models, but it suffers from the serious shortcoming that it works poorly in t
We study the performance of different message passing algorithms in the two dimensional Edwards Anderson model. We show that the standard Belief Propagation (BP) algorithm converges only at high temperature to a paramagnetic solution. Then, we test a
We consider the problem of inferring a graphical Potts model on a population of variables, with a non-uniform number of Potts colors (symbols) across variables. This inverse Potts problem generally involves the inference of a large number of paramete
Latent Dirichlet allocation (LDA) is an important hierarchical Bayesian model for probabilistic topic modeling, which attracts worldwide interests and touches on many important applications in text mining, computer vision and computational biology. T
We derive exact equations that determine the spectra of undirected and directed sparsely connected regular graphs containing loops of arbitrary length. The implications of our results to the structural and dynamical properties of networks are discuss