ﻻ يوجد ملخص باللغة العربية
Solid-state synthesis from powder precursors is the primary processing route to advanced multicomponent ceramic materials. Designing ceramic synthesis routes is usually a laborious, trial-and-error process, as heterogeneous mixtures of powder precursors often evolve through a complicated series of reaction intermediates. Here, we show that phase evolution from multiple precursors can be modeled as a sequence of pairwise interfacial reactions, with thermodynamic driving forces that can be efficiently calculated using ab initio methods. Using the synthesis of the classic high-temperature superconductor YBa$_2$Cu$_3$O$_{6+x}$ (YBCO) as a representative system, we rationalize how replacing the common BaCO$_3$ precursor with BaO$_2$ redirects phase evolution through a kinetically-facile pathway. Our model is validated from in situ X-ray diffraction and in situ microscopy observations, which show rapid YBCO formation from BaO$_2$ in only 30 minutes. By combining thermodynamic modeling with in situ characterization, we introduce a new computable framework to interpret and ultimately design synthesis pathways to complex ceramic materials.
A two step solid state reaction route has been presented to synthesize monophasic cobalt tellurate (Co3TeO6, CTO) using Co3O4 and TeO2 as starting reagents. During synthesis, initial ingredient Co3O4 is found better than CoO in circumventing the inte
Ternary nitride materials hold promise for many optical, electronic, and refractory applications yet their preparation via solid-state synthesis remains challenging. Often, high pressures or reactive gasses are used to manipulate the effective chemic
The structure of crystalline interfaces plays an important role in solid-state reactions. The Al2O3/MgAl2O4/MgO system provides an ideal model system for investigating the mechanisms underlying the migration of interfaces during interface reaction. M
Chalcogenides (Q = S, Se, Te), one of the most important family of materials in solid-state chemistry, differ from oxides by their ability to form covalently-bonded (Qn)2- oligomers. Each chalcogen atom within such entity fulfills the octet rule by s
Poly(vinylidene fluoride) (PVDF) has long been regarded as an ideal piezoelectric plastic because it exhibits a large piezoelectric response and a high thermal stability. However, the realization of piezoelectric PVDF elements has proven to be proble