ﻻ يوجد ملخص باللغة العربية
Ternary nitride materials hold promise for many optical, electronic, and refractory applications yet their preparation via solid-state synthesis remains challenging. Often, high pressures or reactive gasses are used to manipulate the effective chemical potential of nitrogen, yet these strategies require specialized equipment. Here we report on a simple two-step synthesis using ion-exchange reactions that yield rocksalt-derived MgZrN$_2$ and Mg$_2$NbN$_3$, as well as layered MgMoN$_2$. All three compounds show nearly temperature-independent and weak paramagnetic responses to an applied magnetic field at cryogenic temperatures indicating phase pure products. The key to synthesizing these ternary materials is an initial low-temperature step (300-450 $^{circ}$C) to promote Mg-M-N bond formation. Then the products are annealed (800-900 $^{circ}$C) to increase crystalline domains of the ternary product. Calorimetry experiments reveal that initial reaction temperatures are determined by phase transitions of reaction precursors, whereas heating directly to high temperatures results in decomposition. These two-step reactions provide a rational guide to material discovery of other bulk ternary nitrides.
A two step solid state reaction route has been presented to synthesize monophasic cobalt tellurate (Co3TeO6, CTO) using Co3O4 and TeO2 as starting reagents. During synthesis, initial ingredient Co3O4 is found better than CoO in circumventing the inte
Interest in inorganic ternary nitride materials has grown rapidly over the past few decades, as their diversity of chemistries and structures make them appealing for a variety of applications. Due to synthetic challenges posed by the stability of N2,
The van der Waals (vdW) force is a ubiquitous short-range interaction between atoms and molecules that underlies many fundamental phenomena. Early pairwise additive theories pioneered by Keesom, Debye, and London suggested the force to be monotonical
Inorganic nitrides with wurtzite crystal structures are well-known semiconductors used in optoelectronic devices. In contrast, rocksalt-based nitrides are known for their metallic and refractory properties. Breaking this dichotomy, here we report on
Zinc-based nitride CaZn2N2 films grown by molecular beam epitaxy (MBE) with a plasma-assisted active nitrogen-radical source are promising candidates of next-generation semiconductors for light-emitting diodes and solar cells. This nitride compound h