ﻻ يوجد ملخص باللغة العربية
We introduce the notion of non-oscillation, propose a constructive method for its robust verification, and study its application to biological interaction networks (also known as, chemical reaction networks). We begin by revisiting Muldowneys result on non-existence of periodic solutions based on the study of the variational system of the second additive compound of the Jacobian of a nonlinear system. We show that exponential stability of the latter rules out limit cycles, quasi-periodic solutions, and broad classes of oscillatory behavior. We focus then on nonlinear equations arising in biological interaction networks with general kinetics, and we show that the dynamics of the aforementioned variational system can be embedded in a linear differential inclusion. We then propose algorithms for constructing piecewise linear Lyapunov functions to certify global robust non-oscillatory behavior. Finally, we apply our techniques to study several regulated enzymatic cycles where available methods are not able to provide any information about their qualitative global behavior.
We present a framework to transform the problem of finding a Lyapunov function of a Chemical Reaction Network (CRN) in concentration coordinates with arbitrary monotone kinetics into finding a common Lyapunov function for a linear parameter varying s
Inferring genetic networks from gene expression data is one of the most challenging work in the post-genomic era, partly due to the vast space of possible networks and the relatively small amount of data available. In this field, Gaussian Graphical M
Complexes of physically interacting proteins are one of the fundamental functional units responsible for driving key biological mechanisms within the cell. Their identification is therefore necessary not only to understand complex formation but also
A dynamical system entrains to a periodic input if its state converges globally to an attractor with the same period. In particular, for a constant input the state converges to a unique equilibrium point for any initial condition. We consider the pro
Even in the steady-state, the number of biomolecules in living cells fluctuates dynamically; and the frequency spectrum of this chemical fluctuation carries valuable information about the mechanism and the dynamics of the intracellular reactions crea