ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency spectrum of biological noise: a probe of reaction dynamics in living cells

76   0   0.0 ( 0 )
 نشر من قبل Ji-Hyun Kim
 تاريخ النشر 2018
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Even in the steady-state, the number of biomolecules in living cells fluctuates dynamically; and the frequency spectrum of this chemical fluctuation carries valuable information about the mechanism and the dynamics of the intracellular reactions creating these biomolecules. Although recent advances in single-cell experimental techniques enable the direct monitoring of the time-traces of the biological noise in each cell, the development of the theoretical tools needed to extract the information encoded in the stochastic dynamics of intracellular chemical fluctuation is still in its adolescence. Here, we present a simple and general equation that relates the power-spectrum of the product number fluctuation to the product lifetime and the reaction dynamics of the product creation process. By analyzing the time traces of the protein copy number using this theory, we can extract the power spectrum of the mRNA number, which cannot be directly measured by currently available experimental techniques. From the power spectrum of the mRNA number, we can further extract quantitative information about the transcriptional regulation dynamics. Our power spectrum analysis of gene expression noise is demonstrated for the gene network model of luciferase expression under the control of the Bmal 1a promoter in mouse fibroblast cells. Additionally, we investigate how the non-Poisson reaction dynamics and the cell-to-cell heterogeneity in transcription and translation affect the power-spectra of the mRNA and protein number.



قيم البحث

اقرأ أيضاً

The cell cytoskeleton is a striking example of active medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties : a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose for the first time an analytical model of transport limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers like vesicles. We derive analytically the average interaction time with motor proteins which optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures like axons.
In the development of multiscale biological models it is crucial to establish a connection between discrete microscopic or mesoscopic stochastic models and macroscopic continuous descriptions based on cellular density. In this paper a continuous limi t of a two-dimensional Cellular Potts Model (CPM) with excluded volume is derived, describing cells moving in a medium and reacting to each other through both direct contact and long range chemotaxis. The continuous macroscopic model is obtained as a Fokker-Planck equation describing evolution of the cell probability density function. All coefficients of the general macroscopic model are derived from parameters of the CPM and a very good agreement is demonstrated between CPM Monte Carlo simulations and numerical solution of the macroscopic model. It is also shown that in the absence of contact cell-cell interactions, the obtained model reduces to the classical macroscopic Keller-Segel model. General multiscale approach is demonstrated by simulating spongy bone formation from loosely packed mesenchyme via the intramembranous route suggesting that self-organizing physical mechanisms can account for this developmental process.
140 - Pavel M. Lushnikov , Nan Chen , 2008
A connection is established between discrete stochastic model describing microscopic motion of fluctuating cells, and macroscopic equations describing dynamics of cellular density. Cells move towards chemical gradient (process called chemotaxis) with their shapes randomly fluctuating. Nonlinear diffusion equation is derived from microscopic dynamics in dimensions one and two using excluded volume approach. Nonlinear diffusion coefficient depends on cellular volume fraction and it is demonstrated to prevent collapse of cellular density. A very good agreement is shown between Monte Carlo simulations of the microscopic Cellular Potts Model and numerical solutions of the macroscopic equations for relatively large cellular volume fractions. Combination of microscopic and macroscopic models were used to simulate growth of structures similar to early vascular networks.
Spectacular collective phenomena such as jamming, turbulence, wetting, and waves emerge when living cells migrate in groups.
Switching of the direction of flagella rotations is the key control mechanism governing the chemotactic activity of E. coli and many other bacteria. Power-law distributions of switching times are most peculiar because their emergence cannot be deduce d from simple thermodynamic arguments. Recently it was suggested that by adding finite-time correlations into Gaussian fluctuations regulating the energy height of barrier between the two rotation states, one can generate a power-law switching statistics. By using a simple model of a regulatory pathway, we demonstrate that the required amount of correlated `noise can be produced by finite number fluctuations of reacting protein molecules, a condition common to the intracellular chemistry. The corresponding power-law exponent appears as a tunable characteristic controlled by parameters of the regulatory pathway network such as equilibrium number of molecules, sensitivities, and the characteristic relaxation time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا