ﻻ يوجد ملخص باللغة العربية
Given a graph, an $L(p,1)$-labeling of the graph is an assignment $f$ from the vertex set to the set of nonnegative integers such that for any pair of vertices $(u,v),|f (u) - f (v)| ge p$ if $u$ and $v$ are adjacent, and $f(u) eq f(v)$ if $u$ and $v$ are at distance $2$. The $L(p,1)$-labeling problem is to minimize the span of $f$ (i.e.,$max_{uin V}(f(u)) - min_{uin V}(f(u))+1$). It is known to be NP-hard even for graphs of maximum degree $3$ or graphs with tree-width 2, whereas it is fixed-parameter tractable with respect to vertex cover number. Since vertex cover number is a kind of the strongest parameter, there is a large gap between tractability and intractability from the viewpoint of parameterization. To fill up the gap, in this paper, we propose new fixed-parameter algorithms for $L(p,1)$-Labeling by the twin cover number plus the maximum clique size and by the tree-width plus the maximum degree. These algorithms reduce the gap in terms of several combinations of parameters.
In the online labeling problem with parameters n and m we are presented with a sequence of n keys from a totally ordered universe U and must assign each arriving key a label from the label set {1,2,...,m} so that the order of labels (strictly) respec
Hub Labeling (HL) is a data structure for distance oracles. Hierarchical HL (HHL) is a special type of HL, that received a lot of attention from a practical point of view. However, theoretical questions such as NP-hardness and approximation guarantee
We consider the file maintenance problem (also called the online labeling problem) in which n integer items from the set {1,...,r} are to be stored in an array of size m >= n. The items are presented sequentially in an arbitrary order, and must be st
The paper presents fault-tolerant (FT) labeling schemes for general graphs, as well as, improved FT routing schemes. For a given $n$-vertex graph $G$ and a bound $f$ on the number of faults, an $f$-FT connectivity labeling scheme is a distributed dat
The textit{Multi-Constraint Shortest Path (MCSP)} problem aims to find the shortest path between two nodes in a network subject to a given constraint set. It is typically processed as a textit{skyline path} problem. However, the number of intermediat