ﻻ يوجد ملخص باللغة العربية
The textit{Multi-Constraint Shortest Path (MCSP)} problem aims to find the shortest path between two nodes in a network subject to a given constraint set. It is typically processed as a textit{skyline path} problem. However, the number of intermediate skyline paths becomes larger as the network size increases and the constraint number grows, which brings about the dramatical growth of computational cost and further makes the existing index-based methods hardly capable of obtaining the complete exact results. In this paper, we propose a novel high-dimensional skyline path concatenation method to avoid the expensive skyline path search, which then supports the efficient construction of hop labeling index for textit{MCSP} queries. Specifically, a set of insightful observations and techniques are proposed to improve the efficiency of concatenating two skyline path set, a textit{n-Cube} technique is designed to prune the concatenation space among multiple hops, and a textit{constraint pruning} method is used to avoid the unnecessary computation. Furthermore, to scale up to larger networks, we propose a novel textit{forest hop labeling} which enables the parallel label construction from different network partitions. Our approach is the first method that can achieve both accuracy and efficiency for textit{MCSP} query answering. Extensive experiments on real-life road networks demonstrate the superiority of our method over the state-of-the-art solutions.
In two-stage robust optimization the solution to a problem is built in two stages: In the first stage a partial, not necessarily feasible, solution is exhibited. Then the adversary chooses the worst scenario from a predefined set of scenarios. In the
The determination of time-dependent collision-free shortest paths has received a fair amount of attention. Here, we study the problem of computing a time-dependent shortest path among growing discs which has been previously studied for the instance w
In this paper we address the problem of computing a sparse subgraph of a weighted directed graph such that the exact distances from a designated source vertex to all other vertices are preserved under bounded weight increment. Finding a small sized s
Given two locations $s$ and $t$ in a road network, a distance query returns the minimum network distance from $s$ to $t$, while a shortest path query computes the actual route that achieves the minimum distance. These two types of queries find import
Computing shortest path distances between nodes lies at the heart of many graph algorithms and applications. Traditional exact methods such as breadth-first-search (BFS) do not scale up to contemporary, rapidly evolving todays massive networks. There