ﻻ يوجد ملخص باللغة العربية
In this paper an alternative definition of the Rumin complex $(E_0^bullet,d_c)$ is presented, one that relies on a different concept of weights of forms. In this way, the Rumin complex can be constructed on any nilpotent Lie group equipped with a Carnot-Caratheodory metric. Moreover, this construction allows for the direct application of previous non-vanishing results of $ell^{q,p}$ cohomology to all nilpotent Lie groups that admit a positive grading.
We study the Ricci tensor of left-invariant pseudoriemannian metrics on Lie groups. For an appropriate class of Lie groups that contains nilpotent Lie groups, we introduce a variety with a natural $mathrm{GL}(n,mathbb{R})$ action, whose orbits parame
We illustrate an algorithm to classify nice nilpotent Lie algebras of dimension $n$ up to a suitable notion of equivalence; applying the algorithm, we obtain complete listings for $nleq9$. On every nilpotent Lie algebra of dimension $leq 7$, we deter
We consider contact manifolds equipped with Carnot-Caratheodory metrics, and show that the Rumin complex is respected by Sobolev mappings: Pansu pullback induces a chain mapping between the smooth Rumin complex and the distributional Rumin complex. A
We give a new CR invariant treatment of the bigraded Rumin complex and related cohomology groups via differential forms. We also prove related Hodge decomposition theorems. Among many applications, we give a sharp upper bound on the dimension of the
We prove that there do not exist quasi-isometric embeddings of connected nonabelian nilpotent Lie groups equipped with left invariant Riemannian metrics into a metric measure space satisfying the RCD(0,N), with N > 1. In fact, we can prove that a sub