ﻻ يوجد ملخص باللغة العربية
We prove that there do not exist quasi-isometric embeddings of connected nonabelian nilpotent Lie groups equipped with left invariant Riemannian metrics into a metric measure space satisfying the RCD(0,N), with N > 1. In fact, we can prove that a subRiemannian manifold whose generic degree of nonholonomy is not smaller than 2 can not be biLipschitzly embedded in any Banach space with the Radon-Nikodym property. We also get that every regular sub-Riemannian manifold do not satisfy the CD(K,N) with N > 1. We also prove that the subRiemannian manifold is infinitesimally Hilbert space.
We study the Ricci tensor of left-invariant pseudoriemannian metrics on Lie groups. For an appropriate class of Lie groups that contains nilpotent Lie groups, we introduce a variety with a natural $mathrm{GL}(n,mathbb{R})$ action, whose orbits parame
We illustrate an algorithm to classify nice nilpotent Lie algebras of dimension $n$ up to a suitable notion of equivalence; applying the algorithm, we obtain complete listings for $nleq9$. On every nilpotent Lie algebra of dimension $leq 7$, we deter
In this paper an alternative definition of the Rumin complex $(E_0^bullet,d_c)$ is presented, one that relies on a different concept of weights of forms. In this way, the Rumin complex can be constructed on any nilpotent Lie group equipped with a Car
In this paper, by using monotonicity formulas for vector bundle-valued $p$-forms satisfying the conservation law, we first obtain general $L^2$ global rigidity theorems for locally conformally flat (LCF) manifolds with constant scalar curvature, unde
Let $G$ be a connected, simply-connected, compact simple Lie group. In this paper, we show that the isometry group of $G$ with a left-invariant pseudo-Riemannan metric is compact. Furthermore, the identity component of the isometry group is compact if $G$ is not simply-connected.