ترغب بنشر مسار تعليمي؟ اضغط هنا

Work function seen with sub-meV precision through laser photoemission

114   0   0.0 ( 0 )
 نشر من قبل Yukiaki Ishida
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron emission can be utilised to measure the work function of the surface. However, the number of significant digits in the values obtained through thermionic-, field- and photo-emission techniques is typically just two or three. Here, we show that the number can go up to five when angle-resolved photoemission spectroscopy (ARPES) is applied. This owes to the capability of ARPES to detect the slowest photoelectrons that are directed only along the surface normal. By using a laser-based source, we optimised our setup for the slow photoelectrons and resolved the slowest-end cutoff of Au(111) with the sharpness not deteriorated by the bandwidth of light nor by Fermi-Dirac distribution. The work function was leveled within $pm$0.4 meV at least from 30 to 90 K and the surface aging was discerned as a meV shift of the work function. Our study opens the investigations into the fifth significant digit of the work function.



قيم البحث

اقرأ أيضاً

The paper describes a time- and angle-resolved photoemission apparatus consisting of a hemispherical analyzer and a pulsed laser source. We demonstrate 1.48-eV pump and 5.90-eV probe measurements at the >10.5-meV and >240-fs resolutions by use of fai rly monochromatic 170-fs pulses delivered from a regeneratively amplified Ti:sapphire laser system operating typically at 250 kHz. The apparatus is capable to resolve the optically filled superconducting peak in the unoccupied states of a cuprate superconductor, Bi2Sr2CaCu2O8+d. A dataset recorded on Bi(111) surface is also presented. Technical descriptions include the followings: A simple procedure to fine-tune the spatio-temporal overlap of the pump-and-probe beams and their diameters; achieving a long-term stability of the system that enables a normalization-free dataset acquisition; changing the repetition rate by utilizing acoustic optical modulator and frequency-division circuit.
AgF2 is a layered material and a correlated charge transfer insulator with an electronic structure very similar to the parent compounds of cuprate high-Tc superconductors. It is also interesting for being a powerful oxidizer. Here we present a first principles computation of its electronic properties in a slab geometry including its work function for the (010) surface (7.76 eV) which appears to be one of the highest among known materials surpassing even that of fluorinated diamond (7.24 eV). We demonstrate that AgF2 will show a broken-gap type alignment becoming electron doped and promoting injection of holes in many wide band gap insulators if chemical reaction can be avoided. Novel junction devices involving p type and n type superconductors are proposed. The issue of chemical reaction is discussed in connection with the possibility to create flat AgF2 monolayers achieving high-Tc superconductivity. As a first step in this direction, we study the stability and properties of an isolated AgF2 monolayer.
217 - Sergio Carbajo 2020
We present the theoretical basis for a new photoemission regime, transient work function gating (TWFG), that temporally and energetically gates photoemission and produces near-threshold photoelectrons with thermally limited emittance, percent-level q uantum efficiency, and control over temporal coherence. The technique consists of actively gating the work function of a generalized photocathode using non-ionizing long-wavelength optical field to produce an adiabatic modulation of the carrier density at their surface. We examine TWFG as a means to circumvent the long-standing trade-off between low emittance and high quantum efficiency, untethered to particle source or photocathode specifics. TWFG promises new opportunities in photoemission physics for next generation electron and accelerator-based x-ray photon sources.
LaB6 has been used as a commercial electron emitter for decades. Despite the large number of studies on the work function of LaB6, there is no comprehensive understanding of work function trends in the hexaboride materials family. In this study, we u se Density Functional Theory (DFT) calculations to calculated trends of rare earth hexaboride work function and rationalize these trends based on the electronegativity of the metal element. We predict that alloying LaB6 with Ba can further lower the work function by ~0.2 eV. Interestingly, we find that alloyed (La, Ba)B6 can have lower work functions than either LaB6 or BaB6, benefitting from an enhanced surface dipole due to metal element size mismatch. In addition to hexaborides we also investigate work function trends of similar materials families, namely tetraborides and transition metal nitrides, which, like hexaborides, are electrically conductive and refractory and thus may also be promising materials for electron emission applications. We find that tetraborides consistently have higher work functions than their hexaboride analogues as the tetraborides having less ionic bonding and smaller positive surface dipoles. Finally, we find that HfN has a low work function of about 2.2 eV, making HfN a potentially promising new electron emitter material.
We present a reconstruction of the transverse acoustic phonon dispersion of germanium from femtosecond time-resolved x-ray diffuse scattering measurements at the Linac Coherent Light Source. We demonstrate an energy resolution of 0.3 meV with momentu m resolution of 0.01 nm^-1 using 10 keV x-rays with a bandwidth of ~ 1 eV. This high resolution was achieved simultaneously for a large section of reciprocal space including regions closely following three of the principle symmetry directions. The phonon dispersion was reconstructed with less than three hours of measurement time, during which neither the x-ray energy, the sample orientation, nor the detector position were scanned. These results demonstrate how time-domain measurements can complement conventional frequency domain inelastic scattering techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا