ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon Spectroscopy with Sub-meV Resolution by Femtosecond X-ray Diffuse Scattering

130   0   0.0 ( 0 )
 نشر من قبل Mariano Trigo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a reconstruction of the transverse acoustic phonon dispersion of germanium from femtosecond time-resolved x-ray diffuse scattering measurements at the Linac Coherent Light Source. We demonstrate an energy resolution of 0.3 meV with momentum resolution of 0.01 nm^-1 using 10 keV x-rays with a bandwidth of ~ 1 eV. This high resolution was achieved simultaneously for a large section of reciprocal space including regions closely following three of the principle symmetry directions. The phonon dispersion was reconstructed with less than three hours of measurement time, during which neither the x-ray energy, the sample orientation, nor the detector position were scanned. These results demonstrate how time-domain measurements can complement conventional frequency domain inelastic scattering techniques.



قيم البحث

اقرأ أيضاً

Impulsive optical excitation can generate both coherent and squeezed phonons. The expectation value of the phonon displacement $<u_q>$ oscillates at the mode frequency for the coherent state but remains zero for a pure squeezed state. In contrast, bo th show oscillations in $<|u_q|^2>$ at twice the mode frequency. Therefore it can be difficult to distinguish them in a second-order measurement of the displacements, such as in first-order x-ray diffuse scattering. Here we demonstrate a simple method to distinguish squeezed from coherent atomic motion by measurement of the diffuse scattering following double impulsive excitation. We find that femtosecond optical excitation generates squeezed phonons spanning the Brillouin zone in Ge, GaAs and InSb. Our results confirm the mechanism suggested in [Nature Physics 9, 790 (2013)].
We present the full in-plane phonon dispersion of graphite obtained from inelastic x-ray scattering, including the optical and acoustic branches, as well as the mid-frequency range between the $K$ and $M$ points in the Brillouin zone, where experimen tal data have been unavailable so far. The existence of a Kohn anomaly at the $K$ point is further supported. We fit a fifth-nearest neighbour force-constants model to the experimental data, making improved force-constants calculations of the phonon dispersion in both graphite and carbon nanotubes available.
X-ray scattering is one of the primary tools to determine crystallographic configuration with atomic accuracy. However, the measurement of ultrafast structural dynamics in monolayer crystals remains a long-standing challenge due to a significant redu ction of diffraction volume and complexity of data analysis, prohibiting the application of ultrafast x-ray scattering to study nonequilibrium structural properties at the two-dimensional limit. Here, we demonstrate femtosecond surface x-ray diffraction in combination with crystallographic model-refinement calculations to quantify the ultrafast structural dynamics of monolayer WSe$_2$ crystals supported on a substrate. We found the absorbed optical photon energy is preferably coupled to the in-plane lattice vibrations within 2 picoseconds while the out-of-plane lattice vibration amplitude remains unchanged during the first 10 picoseconds. The model-assisted fitting suggests an asymmetric intralayer spacing change upon excitation. The observed nonequilibrium anisotropic structural dynamics in two-dimensional materials agrees with first-principles nonadiabatic modeling in both real and momentum space, marking the distinct structural dynamics of monolayer crystals from their bulk counterparts. The demonstrated methods unlock the benefit of surface sensitive x-ray scattering to quantitatively measure ultrafast structural dynamics in atomically thin materials and across interfaces.
We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel LixMn2O4, a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2p orbital. Moreover, the manganese 3d states are shown to experience spatial delocalization involving 0.16 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of a lithium ion battery.
Motivated by the recent synthesis of Ba$_2$CuO$_{3+delta}$ (BCO), a high temperature superconducting cuprate with putative $d_{3z^2-r^2}$ ground state symmetry, we investigated its electronic structure by means of Cu $L_3$ x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) at the Cu $L_3$ edge on a polycrystalline sample. We show that the XAS profile of BCO is characterised by two peaks associated to inequivalent Cu sites, and that its RIXS response features a single, sharp peak associated to crystal-field excitations. We argue that these observations are only partially compatible with the previously proposed crystal structure of BCO. Based on our spectroscopic results and on previously published powder diffraction measurements, we propose a crystalline structure characterized by two inequivalent Cu sites located at alternated planes along the $c$ axis: nominally trivalent Cu(1) belonging to very short Cu-O chains, and divalent Cu(2) in the oxygen deficient CuO$_ {1.5}$ planes. We also analyze the low-energy region of the RIXS spectra to estimate the magnitude of the magnetic interactions in BCO and find that in-plane nearest neighbor superexchange exceeds 120~meV, similarly to that of other layered cuprates. Although these results do not support the pure $d_{3z^2-r^2}$ ground state scenario, they hint at a significant departure from the common quasi-2D electronic structure of superconducting cuprates of pure $d_{x^2-y^2}$ symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا