ترغب بنشر مسار تعليمي؟ اضغط هنا

A Social Network of Russian Kompromat

67   0   0.0 ( 0 )
 نشر من قبل Dmitry Zinoviev
 تاريخ النشر 2020
والبحث باللغة English
 تأليف Dmitry Zinoviev




اسأل ChatGPT حول البحث

Kompromat (the Russian word for compromising material) has been efficiently used to harass Russian political and business elites since the days of the USSR. Online crowdsourcing projects such as RuCompromat made it possible to catalog and analyze kompromat using quantitative techniques -- namely, social network analysis. In this paper, we constructed a social network of 11,000 Russian and foreign nationals affected by kompromat in Russia in 1991 -- 2020. The network has an excellent modular structure with 62 dense communities. One community contains prominent American officials, politicians, and entrepreneurs (including President Donald Trump) and appears to concern Russias controversial interference in the 2016 U.S. presidential elections. Various network centrality measures identify seventeen most central kompromat figures, with President Vladimir Putin solidly at the top. We further reveal four types of communities dominated by entrepreneurs, politicians, bankers, and law enforcement officials (siloviks), the latter disjointed from the first three.



قيم البحث

اقرأ أيضاً

The criminal nature of narcotics complicates the direct assessment of a drug community, while having a good understanding of the type of people drawn or currently using drugs is vital for finding effective intervening strategies. Especially for the R ussian Federation this is of immediate concern given the dramatic increase it has seen in drug abuse since the fall of the Soviet Union in the early nineties. Using unique data from the Russian social network LiveJournal with over 39 million registered users worldwide, we were able for the first time to identify the on-line drug community by context sensitive text mining of the users blogs using a dictionary of known drug-related official and slang terminology. By comparing the interests of the users that most actively spread information on narcotics over the network with the interests of the individuals outside the on-line drug community, we found that the average drug user in the Russian Federation is generally mostly interested in topics such as Russian rock, non-traditional medicine, UFOs, Buddhism, yoga and the occult. We identify three distinct scale-free sub-networks of users which can be uniquely classified as being either infectious, susceptible or immune.
Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging wo rk in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
247 - Swapnil Dhamal 2018
We study the effectiveness of using multiple phases for maximizing the extent of information diffusion through a social network, and present insights while considering various aspects. In particular, we focus on the independent cascade model with the possibility of adaptively selecting seed nodes in multiple phases based on the observed diffusion in preceding phases, and conduct a detailed simulation study on real-world network datasets and various values of seeding budgets. We first present a negative result that more phases do not guarantee a better spread, however the adaptability advantage of more phases generally leads to a better spread in practice, as observed on real-world datasets. We study how diffusing in multiple phases affects the mean and standard deviation of the distribution representing the extent of diffusion. We then study how the number of phases impacts the effectiveness of multiphase diffusion, how the diffusion progresses phase-by-phase, and what is an optimal way to split the total seeding budget across phases. Our experiments suggest a significant gain when we move from single phase to two phases, and an appreciable gain when we further move to three phases, but the marginal gain thereafter is usually not very significant. Our main conclusion is that, given the number of phases, an optimal way to split the budget across phases is such that the number of nodes influenced in each phase is almost the same.
In many real-world scenarios, it is nearly impossible to collect explicit social network data. In such cases, whole networks must be inferred from underlying observations. Here, we formulate the problem of inferring latent social networks based on ne twork diffusion or disease propagation data. We consider contagions propagating over the edges of an unobserved social network, where we only observe the times when nodes became infected, but not who infected them. Given such node infection times, we then identify the optimal network that best explains the observed data. We present a maximum likelihood approach based on convex programming with a l1-like penalty term that encourages sparsity. Experiments on real and synthetic data reveal that our method near-perfectly recovers the underlying network structure as well as the parameters of the contagion propagation model. Moreover, our approach scales well as it can infer optimal networks of thousands of nodes in a matter of minutes.
Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow, and a mean to derive early-warning sensors, impr oving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioural properties derived from the friendship paradox, is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users network centrality effectively translate into moderate awareness advantage (up to 26 hours); and that geo-location of users within or outside of the hurricane-affected area plays significant role in determining the scale of such advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility of implementing a simple sentiment sensing technique to detect and locate disasters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا