ترغب بنشر مسار تعليمي؟ اضغط هنا

Social Network Analysis for Social Neuroscientists

248   0   0.0 ( 0 )
 نشر من قبل Mason A. Porter
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.



قيم البحث

اقرأ أيضاً

People differ in how they attend to, interpret, and respond to their surroundings. Convergent processing of the world may be one factor that contributes to social connections between individuals. We used neuroimaging and network analysis to investiga te whether the most central individuals in their communities (as measured by in-degree centrality, a notion of popularity) process the world in a particularly normative way. More central individuals had exceptionally similar neural responses to their peers and especially to each other in brain regions associated with high-level interpretations and social cognition (e.g., in the default-mode network), whereas less-central individuals exhibited more idiosyncratic responses. Self-reported enjoyment of and interest in stimuli followed a similar pattern, but accounting for these data did not change our main results. These findings suggest an Anna Karenina principle in social networks: Highly-central individuals process the world in exceptionally similar ways, whereas less-central individuals process the world in idiosyncratic ways.
66 - Dmitry Zinoviev 2020
Kompromat (the Russian word for compromising material) has been efficiently used to harass Russian political and business elites since the days of the USSR. Online crowdsourcing projects such as RuCompromat made it possible to catalog and analyze kom promat using quantitative techniques -- namely, social network analysis. In this paper, we constructed a social network of 11,000 Russian and foreign nationals affected by kompromat in Russia in 1991 -- 2020. The network has an excellent modular structure with 62 dense communities. One community contains prominent American officials, politicians, and entrepreneurs (including President Donald Trump) and appears to concern Russias controversial interference in the 2016 U.S. presidential elections. Various network centrality measures identify seventeen most central kompromat figures, with President Vladimir Putin solidly at the top. We further reveal four types of communities dominated by entrepreneurs, politicians, bankers, and law enforcement officials (siloviks), the latter disjointed from the first three.
In many real-world scenarios, it is nearly impossible to collect explicit social network data. In such cases, whole networks must be inferred from underlying observations. Here, we formulate the problem of inferring latent social networks based on ne twork diffusion or disease propagation data. We consider contagions propagating over the edges of an unobserved social network, where we only observe the times when nodes became infected, but not who infected them. Given such node infection times, we then identify the optimal network that best explains the observed data. We present a maximum likelihood approach based on convex programming with a l1-like penalty term that encourages sparsity. Experiments on real and synthetic data reveal that our method near-perfectly recovers the underlying network structure as well as the parameters of the contagion propagation model. Moreover, our approach scales well as it can infer optimal networks of thousands of nodes in a matter of minutes.
Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow, and a mean to derive early-warning sensors, impr oving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioural properties derived from the friendship paradox, is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users network centrality effectively translate into moderate awareness advantage (up to 26 hours); and that geo-location of users within or outside of the hurricane-affected area plays significant role in determining the scale of such advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility of implementing a simple sentiment sensing technique to detect and locate disasters.
65 - Swapnil Dhamal 2017
This doctoral work focuses on three main problems related to social networks: (1) Orchestrating Network Formation: We consider the problem of orchestrating formation of a social network having a certain given topology that may be desirable for the in tended usecases. Assuming the social network nodes to be strategic in forming relationships, we derive conditions under which a given topology can be uniquely obtained. We also study the efficiency and robustness of the derived conditions. (2) Multi-phase Influence Maximization: We propose that information diffusion be carried out in multiple phases rather than in a single instalment. With the objective of achieving better diffusion, we discover optimal ways of splitting the available budget among the phases, determining the time delay between consecutive phases, and also finding the individuals to be targeted for initiating the diffusion process. (3) Scalable Preference Aggregation: It is extremely useful to determine a small number of representatives of a social network such that the individual preferences of these nodes, when aggregated, reflect the aggregate preference of the entire network. Using real-world data collected from Facebook with human subjects, we discover a model that faithfully captures the spread of preferences in a social network. We hence propose fast and reliable ways of computing a truly representative aggregate preference of the entire network. In particular, we develop models and methods for solving the above problems, which primarily deal with formation and analysis of social networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا