ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origin of the Glass-like Thermal Conductivity in Crystalline Metal-Organic Frameworks

347   0   0.0 ( 0 )
 نشر من قبل Yanguang Zhou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is textbookly regarded that phonons, i.e., an energy quantum of propagating lattice waves, are the main heat carriers in perfect crystals. As a result, in many crystals, e.g., bulk silicon, the temperature-dependent thermal conductivity shows the classical 1/T relationship because of the dominant Umklapp phonon-phonon scattering in the systems. However, the thermal conductivity of many crystalline metal-organic frameworks is very low and shows no, a weakly negative and even a weakly positive temperature dependence (glass-like thermal conductivity). It has been in debate whether the thermal transport can be still described by phonons in metal-organic frameworks. Here, by studying two typical systems, i.e., crystal zeolitic imidazolate framework-4 (cZIF-4) and crystal zeolitic imidazolate framework-62 (c-ZIF62), we prove that the ultralow thermal conductivity in metal-organic frameworks is resulting from the strong phonon intrinsic structure scattering due to the large mass difference and the large cavity between Zn and N atoms. Our mean free path spectrum analysis shows that both propagating and non-propagating anharmonic vibrational modes exist in the systems, and contribute largely to the thermal conductivity. The corresponding weakly negative or positive temperature dependence of the thermal conductivity is stemming from the competition between the propagating and non-propagating anharmonic vibrational modes. Our study here provides a fundamental understanding of thermal transport in metal-organic frameworks and will guide the design of the thermal-related applications using metal-organic frameworks, e.g., inflammable gas storage, chemical catalysis, solar thermal conversion and so on.



قيم البحث

اقرأ أيضاً

We develop a proper nonempirical spin-density formalism for the van der Waals density functional (vdW-DF) method. We show that this generalization, termed svdW-DF, is firmly rooted in the single-particle nature of exchange and we test it on a range o f spin systems. We investigate in detail the role of spin in the nonlocal-correlation driven adsorption of H$_2$ and CO$_2$ in the linear magnets Mn-MOF74, Fe-MOF74, Co-MOF74, and Ni-MOF74. In all cases, we find that spin plays a significant role during the adsorption process despite the general weakness of the molecular-magnetic responses. The case of CO$_2$ adsorption in Ni-MOF74 is particularly interesting, as the inclusion of spin effects results in an increased attraction, opposite to what the diamagnetic nature of CO$_2$ would suggest. We explain this counter-intuitive result, tracking the behavior to a coincidental hybridization of the O $p$ states with the Ni $d$ states in the down-spin channel. More generally, by providing insight on nonlocal correlation in concert with spin effects, our nonempirical svdW-DF method opens the door for a deeper understanding of weak nonlocal magnetic interactions.
Aluminum nitride (AlN) plays a key role in modern power electronics and deep-ultraviolet photonics, where an understanding of its thermal properties is essential. Here we measure the thermal conductivity of crystalline AlN by the 3${omega}$ method, f inding it ranges from 674 ${pm}$ 56 W/m/K at 100 K to 186 ${pm}$ 7 W/m/K at 400 K, with a value of 237 ${pm}$ 6 W/m/K at room temperature. We compare these data with analytical models and first principles calculations, taking into account atomic-scale defects (O, Si, C impurities, and Al vacancies). We find Al vacancies play the greatest role in reducing thermal conductivity because of the largest mass-difference scattering. Modeling also reveals that 10% of heat conduction is contributed by phonons with long mean free paths, over ~7 ${mu}$m at room temperature, and 50% by phonons with MFPs over ~0.3 ${mu}$m. Consequently, the effective thermal conductivity of AlN is strongly reduced in sub-micron thin films or devices due to phonon-boundary scattering.
403 - Yao Sun , Junfeng Gao , Yuan Cheng 2018
Metal-organic framework (MOF) UiO-66 nanocrystals were previously believed to be piezo/ferro-electrically inactive because of their centrosymmetric lattice symmetries (Fm-3m (225)) revealed by Powder X-ray diffraction. However, via delicate dual AC r esonance tracking piezoresponse force microscopy and piezoresponse force spectroscopy characterizations, our nanoscale probing for the first time demonstrate that UiO-66 nanocrystals show piezo/ferro-electric response. Our compelling experimental and theoretically analyses disclose that the structure of UiO-66 should not be the highly centrosymmetric Fm-3m (225) but a reduced symmetry form instead. UiO-66(Hf)-type MOFs possess stronger piezoresponse and better ferroelectric switching behaviours than their counterparts UiO-66 (Zr)-type MOFs. Our study not only enriches the structural understanding of UiO-66 MOF, but also suggests possible modification of electronic property of the MOFs by judicious selection of metal ions and functional ligands.
Diamine-appended metal{organic frameworks (MOFs) of the form Mg2(dobpdc)(diamine)2 adsorb CO2 in a cooperative fashion, exhibiting an abrupt change in CO2 occupancy with pressure or temperature. This change is accompanied by hysteresis. While hystere sis is suggestive of a firstorder phase transition, we show that hysteretic temperature-occupancy curves associated with this material are qualitatively unlike the curves seen in the presence of a phase transition; they are instead consistent with CO2 chain polymerization, within one-dimensional channels in the MOF, in the absence of a phase transition. Our simulations of a microscopic model reproduce this dynamics, and point the way toward rational control, in and out of equilibrium, of cooperative adsorption in this industrially important class of materials.
We present a three-dimensional Ising model where lines of equal spins are frozen in such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this porous Ising model can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH$_4$) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا