ترغب بنشر مسار تعليمي؟ اضغط هنا

Unravelling the origin of piezo/ferro-electric properties of metal-organic frameworks (MOFs) nanocrystals

404   0   0.0 ( 0 )
 نشر من قبل Kaiyang Zeng Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Metal-organic framework (MOF) UiO-66 nanocrystals were previously believed to be piezo/ferro-electrically inactive because of their centrosymmetric lattice symmetries (Fm-3m (225)) revealed by Powder X-ray diffraction. However, via delicate dual AC resonance tracking piezoresponse force microscopy and piezoresponse force spectroscopy characterizations, our nanoscale probing for the first time demonstrate that UiO-66 nanocrystals show piezo/ferro-electric response. Our compelling experimental and theoretically analyses disclose that the structure of UiO-66 should not be the highly centrosymmetric Fm-3m (225) but a reduced symmetry form instead. UiO-66(Hf)-type MOFs possess stronger piezoresponse and better ferroelectric switching behaviours than their counterparts UiO-66 (Zr)-type MOFs. Our study not only enriches the structural understanding of UiO-66 MOF, but also suggests possible modification of electronic property of the MOFs by judicious selection of metal ions and functional ligands.



قيم البحث

اقرأ أيضاً

Molecular dynamics simulations combined with periodic electronic structure calculations are performed to decipher structural, thermodynamical and dynamical properties of the interfaced vs. confined water adsorbed in hexagonal 1D channels of the 2D la yered electrically conductive Cu3(HHTP)2 and Cu3(HTTP)2 metal-organic frameworks (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene and HTTP = 2,3,6,7,10,11-hexathiotriphenylene). Comparing water adsorption in bulk vs. slab models of the studied 2D MOFs shows that water is preferentially adsorbed on the framework walls via forming hydrogen bonds to the organic linkers rather than by coordinating to the coordinatively unsaturated open-Cu2+ sites. Theory predicts that in Cu3(HTTP)2 the van der Waals interactions are stronger which helps the MOF maintain its layered morphology with allowing very little water molecules to diffuse into the interlayer space. Data presented in this work are general and helpful in implementing new strategies for preserving the integrity as well as electrical conductivity of porous materials in aqueous solutions.
It is textbookly regarded that phonons, i.e., an energy quantum of propagating lattice waves, are the main heat carriers in perfect crystals. As a result, in many crystals, e.g., bulk silicon, the temperature-dependent thermal conductivity shows the classical 1/T relationship because of the dominant Umklapp phonon-phonon scattering in the systems. However, the thermal conductivity of many crystalline metal-organic frameworks is very low and shows no, a weakly negative and even a weakly positive temperature dependence (glass-like thermal conductivity). It has been in debate whether the thermal transport can be still described by phonons in metal-organic frameworks. Here, by studying two typical systems, i.e., crystal zeolitic imidazolate framework-4 (cZIF-4) and crystal zeolitic imidazolate framework-62 (c-ZIF62), we prove that the ultralow thermal conductivity in metal-organic frameworks is resulting from the strong phonon intrinsic structure scattering due to the large mass difference and the large cavity between Zn and N atoms. Our mean free path spectrum analysis shows that both propagating and non-propagating anharmonic vibrational modes exist in the systems, and contribute largely to the thermal conductivity. The corresponding weakly negative or positive temperature dependence of the thermal conductivity is stemming from the competition between the propagating and non-propagating anharmonic vibrational modes. Our study here provides a fundamental understanding of thermal transport in metal-organic frameworks and will guide the design of the thermal-related applications using metal-organic frameworks, e.g., inflammable gas storage, chemical catalysis, solar thermal conversion and so on.
We present a three-dimensional Ising model where lines of equal spins are frozen in such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this porous Ising model can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH$_4$) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.
The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsor ptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N2 physisorption experiments, was used to show that an irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 micrometer diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.
Diamine-appended metal{organic frameworks (MOFs) of the form Mg2(dobpdc)(diamine)2 adsorb CO2 in a cooperative fashion, exhibiting an abrupt change in CO2 occupancy with pressure or temperature. This change is accompanied by hysteresis. While hystere sis is suggestive of a firstorder phase transition, we show that hysteretic temperature-occupancy curves associated with this material are qualitatively unlike the curves seen in the presence of a phase transition; they are instead consistent with CO2 chain polymerization, within one-dimensional channels in the MOF, in the absence of a phase transition. Our simulations of a microscopic model reproduce this dynamics, and point the way toward rational control, in and out of equilibrium, of cooperative adsorption in this industrially important class of materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا