ترغب بنشر مسار تعليمي؟ اضغط هنا

Anodic Oxidation of Epitaxial Superconductor-Semiconductor Hybrids

67   0   0.0 ( 0 )
 نشر من قبل Charles Marcus
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a new fabrication process for hybrid semiconductor-superconductor heterostructures based on anodic oxidation (AO), allowing controlled thinning of epitaxial Al films. Structural and transport studies of oxidized epitaxial Al films grown on insulating GaAs substrates reveal spatial non-uniformity and enhanced critical temperature and magnetic fields. Oxidation of epitaxial Al on hybrid InAs heterostructures with a conducting quantum well show similarly enhanced superconducting properties transferred to the two-dimensional electron gas (2DEG) by proximity effect, with critical perpendicular magnetic fields up to 3.5 T. An insulating AlOx film, that passivates the heterostructure from exposure to air, is obtained by complete oxidation of the Al. It simultaneously removes the need to strip Al which damages the underlying semiconductor. AO passivation yielded 2DEG mobilities two times higher than similar devices with Al removed by wet etching. An AO-passivated Hall bar showed quantum Hall features emerging at a transverse field of 2.5 T, below the critical transverse field of thinned films, eventually allowing transparent coupling of quantum Hall effect and superconductivity. AO thinning and passivation are compatible with standard lithographic techniques, giving lateral resolution below <50 nm. We demonstrate local patterning of AO by realizing a semiconductor-based Josephson junction operating up to 0.3 T perpendicular.



قيم البحث

اقرأ أيضاً

Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example whe re the atomic scale uniformity of the interface plays a key role for the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and for designing devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al, are grown with epitaxially matched single plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and appears to solve the soft-gap problem in superconducting hybrid structures.
We investigate the nucleation of superconductivity in a superconducting Al strip under the influence of the magnetic field generated by a current-carrying Nb wire, perpendicularly oriented and located underneath the strip. The inhomogeneous magnetic field, induced by the Nb wire, produces a spatial modulation of the critical temperature T_c, leading to a controllable localization of the superconducting order parameter (OP) wave function. We demonstrate that close to the phase boundary T_c(B_ext) the localized OP solution can be displaced reversibly by either applying an external perpendicular magnetic field B_ext or by changing the amplitude of the inhomogeneous field.
Large area nickel antidot arrays with density up to 10^10 /cm^2 have been fabricated by depositing nickel onto anodic aluminum oxide membranes that contain lattices of nanopores. Electron microscopy images show a high degree of order of the antidot a rrays. Various sizes and shapes of the antidots were observed with increasing thickness of the deposited nickel. New features appear in the antidot arrays in both magnetization and transport measurements when the external magnetic field is parallel to the current direction, including an enhancement and a nonmonotonous field dependence of the magnetoresistance, larger values of the coercive field and remanence moment, and smaller saturation field.
Ferromagnet/superconductor heterostructures allow for the combination of unique physical phenomena offered by the both fields of magnetism and superconductivity. It was shown recently that spin waves can be efficiently scattered in such structures by a lattice of static or moving magnetic flux quanta (Abrikosov vortices), resulting in bandgaps in the spin-wave spectra. Here, we realize a nonreciprocal motion of a vortex lattice in nanoengineered symmetric and asymmetric pinning landscapes and investigate the non-reciprocal scattering of magnons on fluxons. We demonstrate that the magnon bandgap frequencies can be tuned by the application of a low-dissipative transport current and by its polarity reversal. Furthermore, we exploit the rectifying (vortex diode or ratchet) effect by the application of a 100 MHz-frequency ac current to deliberately realize bandgap up- or downshifts during one ac halfwave while keeping the bandgap frequency constant during the other ac halfwave. The investigated phenomena allow for the realization of energy-efficient hybrid magnonic devices, such as microwave filters with an ultra-high bandgap tunability of 10 GHz/mA and a fast modulation of the transmission characteristics on the 10 ns time scale.
Hybrid semiconductor-ferromagnetic insulator heterostructures are interesting due to their tunable electronic transport, self-sustained stray field and local proximitized magnetic exchange. In this work, we present lattice matched hybrid epitaxy of s emiconductor - ferromagnetic insulator InAs/EuS heterostructures and analyze the atomic-scale structure as well as their electronic and magnetic characteristics. The Fermi level at the InAs/EuS interface is found to be close to the InAs conduction band and in the bandgap of EuS, thus preserving the semiconducting properties. Both neutron and X-ray reflectivity measurements show that the ferromagnetic component is mainly localized in the EuS thin film with a suppression of the Eu moment in the EuS layer nearest the InAs. Induced moments in the adjacent InAs layers were not detected although our ab initio calculations indicate a small exchange field in the InAs layer. This work presents a step towards realizing high quality semiconductor - ferromagnetic insulator hybrids, which is a critical requirement for development of various quantum and spintronic applications without external magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا