ﻻ يوجد ملخص باللغة العربية
Often in applications ranging from medical imaging and sensor networks to error correction and data science (and beyond), one needs to solve large-scale linear systems in which a fraction of the measurements have been corrupted. We consider solving such large-scale systems of linear equations $mathbf{A}mathbf{x}=mathbf{b}$ that are inconsistent due to corruptions in the measurement vector $mathbf{b}$. We develop several variants of iterative methods that converge to the solution of the uncorrupted system of equations, even in the presence of large corruptions. These methods make use of a quantile of the absolute values of the residual vector in determining the iterate update. We present both theoretical and empirical results that demonstrate the promise of these iterative approaches.
We consider linear systems $Ax = b$ where $A in mathbb{R}^{m times n}$ consists of normalized rows, $|a_i|_{ell^2} = 1$, and where up to $beta m$ entries of $b$ have been corrupted (possibly by arbitrarily large numbers). Haddock, Needell, Rebrova an
Projection-based iterative methods for solving large over-determined linear systems are well-known for their simplicity and computational efficiency. It is also known that the correct choice of a sketching procedure (i.e., preprocessing steps that re
Measurement data in linear systems arising from real-world applications often suffers from both large, sparse corruptions, and widespread small-scale noise. This can render many popular solvers ineffective, as the least squares solution is far from t
An approach is given for solving large linear systems that combines Krylov methods with use of two different grid levels. Eigenvectors are computed on the coarse grid and used to deflate eigenvalues on the fine grid. GMRES-type methods are first used
For a linear matrix function $f$ in $X in R^{mtimes n}$ we consider inhomogeneous linear matrix equations $f(X) = E$ for $E eq 0$ that have or do not have solutions. For such systems we compute optimal norm constrained solutions iteratively using th