ترغب بنشر مسار تعليمي؟ اضغط هنا

A spectral shape optimization problem with a nonlocal competing term

197   0   0.0 ( 0 )
 نشر من قبل Dario Mazzoleni
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the minimization of a spectral functional made as the sum of the first eigenvalue of the Dirichlet Laplacian and the relative strength of a Riesz-type interaction functional. We show that when the Riesz repulsion strength is below a critical value, existence of minimizers occurs. Then we prove, by means of an expansion analysis, that the ball is a rigid minimizer when the Riesz repulsion is small enough. Eventually we show that for certain regimes of the Riesz repulsion, regular minimizers do not exist.



قيم البحث

اقرأ أيضاً

We prove a general result about the behaviour of minimizing sequences for nonlocal shape functionals satisfying suitable structural assumptions. Typical examples include functions of the eigenvalues of the fractional Laplacian under homogeneous Diric hlet boundary conditions. Exploiting a nonlocal version of Lions concentration-compactness principle, we prove that either an optimal shape exists, or there exists a minimizing sequence consisting of two pieces whose mutual distance tends to infinity. Our work is inspired by similar results obtained by Bucur in the local case.
We study a geometric variational problem for sets in the plane in which the perimeter and a regularized dipolar interaction compete under a mass constraint. In contrast to previously studied nonlocal isoperimetric problems, here the nonlocal term asy mptotically localizes and contributes to the perimeter term to leading order. We establish existence of generalized minimizers for all values of the dipolar strength, mass and regularization cutoff and give conditions for existence of classical minimizers. For subcritical dipolar strengths we prove that the limiting functional is a renormalized perimeter and that for small cutoff lengths all mass-constrained minimizers are disks. For critical dipolar strength, we identify the next-order $Gamma$-limit when sending the cutoff length to zero and prove that with a slight modification of the dipolar kernel there exist masses for which classical minimizers are not disks.
We prove existence, uniqueness, regularity and separation properties for a nonlocal Cahn-Hilliard equation with a reaction term. We deal here with the case of logarithmic potential and degenerate mobility as well an uniformly lipschitz in $u$ reaction term $g(x,t,u).$
In this paper we study a nonlocal diffusion problem on a manifold. These kind of equations can model diffusions when there are long range effects and have been widely studied in Euclidean space. We first prove existence and uniqueness of solutions and a comparison principle. Then, for a convenient rescaling we prove that the operator under consideration converges to a multiple of the usual Heat-Beltrami operator on the manifold. Next, we look at the long time behavior on compact manifolds by studying the spectral properties of the operator. Finally, for the model case of hyperbolic space we study the long time asymptotics and find a different and interesting behavior.
Conditions for the existence and uniqueness of weak solutions for a class of nonlinear nonlocal degenerate parabolic equations are established. The asymptotic behaviour of the solutions as time tends to infinity are also studied. In particular, the f inite time extinction and polynomial decay properties are proved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا