ﻻ يوجد ملخص باللغة العربية
We prove a general result about the behaviour of minimizing sequences for nonlocal shape functionals satisfying suitable structural assumptions. Typical examples include functions of the eigenvalues of the fractional Laplacian under homogeneous Dirichlet boundary conditions. Exploiting a nonlocal version of Lions concentration-compactness principle, we prove that either an optimal shape exists, or there exists a minimizing sequence consisting of two pieces whose mutual distance tends to infinity. Our work is inspired by similar results obtained by Bucur in the local case.
We study the minimization of a spectral functional made as the sum of the first eigenvalue of the Dirichlet Laplacian and the relative strength of a Riesz-type interaction functional. We show that when the Riesz repulsion strength is below a critical
For $l$-homogeneous linear differential operators $mathcal{A}$ of constant rank, we study the implication $v_jrightharpoonup v$ in $X$ and $mathcal{A} v_jrightarrow mathcal{A} v$ in $W^{-l}Y$ implies $F(v_j)rightsquigarrow F(v)$ in $Z$, where $F$ is
For a given Lipschitz domain $Omega$, it is a classical result that the trace space of $W^{1,p}(Omega)$ is $W^{1-1/p,p}(partialOmega)$, namely any $W^{1,p}(Omega)$ function has a well-defined $W^{1-1/p,p}(partialOmega)$ trace on its codimension-1 bou
This note is devoted to the study of Hyt{o}nens extrapolation theorem of compactness on weighted Lebesgue spaces. Two criteria of compactness of linear operators in the two-weight setting are obtained. As applications, we obtain two-weight compactnes
For any bounded, smooth domain $Omegasubset R^2$, %(or $Omega=R^2$), we will establish the weak compactness property of solutions to the simplified Ericksen-Leslie system for both uniaxial and biaxial nematics, and the convergence of weak solutions o