ترغب بنشر مسار تعليمي؟ اضغط هنا

Sulphur and carbon isotopes towards Galactic centre clouds

70   0   0.0 ( 0 )
 نشر من قبل Pedro Humire
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring isotopic ratios is a sensitive technique used to obtain information on stellar nucleosynthesis and chemical evolution. We present measurements of the carbon and sulphur abundances in the interstellar medium of the central region of our Galaxy. The selected targets are the +50km/s Cloud and several l.o.s. clouds towards Sgr B2(N). Towards the +50km/s Cloud, we observed the J=2-1 rotational transitions of CS, C34S, 13CS, C33S, and 13C34S, and the J=3-2 transitions of CS and C34S with the IRAM-30m telescope, as well as the J=6-5 transitions of C34S and 13CS with the APEX 12m telescope, all in emission. The J=2-1 rotational transitions of CS, C34S, 13CS, and 13C34S were observed with ALMA in the envelope of Sgr B2(N), with those of CS and C34S also observed in the l.o.s. clouds towards Sgr B2(N), all in absorption. In the +50km/s Cloud we derive a 12C13C isotopic ratio of ~22.1, that leads, with the measured 13CS/C34S line intensity ratio, to a 32S/34S ratio of 16.3+3.0-2.4. We also derive the 32S/34S isotopic ratio more directly from the two isotopologues 13CS and 13C34S, which leads to an independent 32S/34S estimation of 16.3+2.1-1.7 and 17.9+-5.0 for the +50km/s Cloud and Sgr B2(N), respectively. We also obtain a 34S/33S ratio of ~4.3 in the +50 km/s Cloud. Previous studies observed a decreasing trend in the 32S/34S isotopic ratios when approaching the Galactic centre. Our result indicates a termination of this tendency at least at a galactocentric distance of 130-30+60 pc. This is at variance with findings based on 12C/13C, 14N/15N and 18O/17O isotope ratios, where the above-mentioned trend is observed to continue right to the central molecular zone. This can indicate a drop in the production of massive stars at the Galactic centre, in the same line as recent metallicity gradient studies, and opens the work towards a comparison with Galactic and stellar evolution models.



قيم البحث

اقرأ أيضاً

We present a study of the three-dimensional structure of the molecular clouds in the Galactic Centre (GC) using CO emission and OH absorption lines. Two CO isotopologue lines, $^{12}$CO ($J$=1$rightarrow$0) and $^{13}$CO ($J$=1$rightarrow$0), and fou r OH ground-state transitions, surveyed by the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH), contribute to this study. We develop a novel method to calculate the OH column density, excitation temperature, and optical depth precisely using all four OH lines, and we employ it to derive a three-dimensional model for the distribution of molecular clouds in the GC for six slices in Galactic latitude. The angular resolution of the data is 15.5 arcmin, which at the distance of the GC (8.34 kpc) is equivalent to 38 pc. We find that the total mass of OH in the GC is in the range 2400-5100 Solar mass . The face-on view at a Galactic latitude of b = 0{deg} displays a bar-like structure with an inclination angle of 67.5 $pm$ 2.1{deg} with respect to the line of sight. No ring-like structure in the GC is evident in our data, likely due to the low spatial resolution of the CO and OH maps.
105 - L. Colzi , O. Sipila , E. Roueff 2020
C-fractionation has been studied from a theoretical point of view with different models of time-dependent chemistry, including both isotope-selective photodissociation and low-temperature isotopic exchange reactions. Recent chemical models predict th at the latter may lead to a depletion of $^{13}$C in nitrile-bearing species, with $^{12}$C/$^{13}$C ratios two times higher than the elemental abundance ratio of 68 in the local ISM. Since the carbon isotopic ratio is commonly used to evaluate the $^{14}$N/$^{15}$N ratios with the double-isotope method, it is important to study C-fractionation in detail to avoid incorrect assumptions. In this work we implemented a gas-grain chemical model with new isotopic exchange reactions and investigated their introduction in the context of dense and cold molecular gas. In particular, we investigated the $^{12}$C/$^{13}$C ratios of HNC, HCN, and CN using a grid of models, with temperatures and densities ranging from 10 to 50 K and 2$times$10$^{3}$ to 2$times$10$^{7}$ cm$^{-3}$, respectively. We suggest a possible $^{13}$C exchange through the $^{13}$C + C$_{3}$ $rightarrow$ $^{12}$C +$^{13}$CC$_{2}$ reaction, which does not result in dilution, but rather in $^{13}$C enhancement, for molecules formed starting from atomic carbon. This effect is efficient in a range of time between the formation of CO and its freeze-out on grains. Furthermore, we show that the $^{12}$C/$^{13}$C ratios of nitriles are predicted to be a factor 0.8-1.9 different from the local value of 68 for massive star-forming regions. This result also affects the $^{14}$N/$^{15}$N ratio: a value of 330 obtained with the double-isotope method is predicted to be 260-1150, depending on the physical conditions. Finally, we studied the $^{12}$C/$^{13}$C ratios by varying the cosmic-ray ionization rate: the ratios increase with it because of secondary photons and cosmic-ray reactions.
The latest generation of Galactic-plane surveys is enhancing our ability to study the effects of galactic environment upon the process of star formation. We present the first data from CO Heterodyne Inner Milky Way Plane Survey 2 (CHIMPS2). CHIMPS2 i s a survey that will observe the Inner Galaxy, the Central Molecular Zone (CMZ), and a section of the Outer Galaxy in $^{12}$CO, $^{13}$CO, and C$^{18}$O $(J = 3rightarrow2)$ emission with the Heterodyne Array Receiver Program on the James Clerk Maxwell Telescope (JCMT). The first CHIMPS2 data presented here are a first look towards the CMZ in $^{12}$CO J = 3$rightarrow$2 and cover $-3^{circ}leq,ell,leq,5^{circ}$ and $mid$b$mid leq 0.5^{circ}$ with angular resolution of 15 arcsec, velocity resolution of 1 km s$^{-1}$, and rms $Delta T_A ^ast =$ 0.58 K at these resolutions. Such high-resolution observations of the CMZ will be a valuable data set for future studies, whilst complementing the existing Galactic Plane surveys, such as SEDIGISM, the Herschel infrared Galactic Plane Survey, and ATLASGAL. In this paper, we discuss the survey plan, the current observations and data, as well as presenting position-position maps of the region. The position-velocity maps detect foreground spiral arms in both absorption and emission.
We present results on a search for 86.243 GHz SiO (J = 2 -- 1, v = 1) maser emission toward 67 OH/IR stars located near the Galactic Centre. We detected 32 spectral peaks, of which 28 correspond to SiO maser lines arising from the envelopes of these OH/IR stars. In OH/IR stars, we obtained an SiO maser detection rate of about 40%. We serendipitously detected two other lines from OH/IR stars at 86.18 GHz, which could be due to a CCS-molecule transition at 86.181 GHz or probably to an highly excited OH molecular transition at 86.178 GHz. The detection rate of 86 GHz maser emission is found to be about 60% for sources with The Midcourse Space Experiment (MSX) A - E < 2.5 mag; but it drops to 25% for the reddest OH/IR stars with MSX A - E > 2.5 mag. This supports the hypothesis by Messineo et al. (2002) that the SiO masers are primarily found in relatively thinner circumstellar material.
The evolution of molecular clouds in galactic centres is thought to differ from that in galactic discs due to a significant influence of the external gravitational potential. We present a set of numerical simulations of molecular clouds orbiting on t he 100-pc stream of the Central Molecular Zone (the central $sim500$ pc of the Galaxy) and characterise their morphological and kinematic evolution in response to the background potential and eccentric orbital motion. We find that the clouds are shaped by strong shear and torques, by tidal and geometric deformation, and by their passage through the orbital pericentre. Within our simulations, these mechanisms control cloud sizes, aspect ratios, position angles, filamentary structure, column densities, velocity dispersions, line-of-sight velocity gradients, spin angular momenta, and kinematic complexity. By comparing these predictions to observations of clouds on the Galactic Centre dust ridge, we find that our simulations naturally reproduce a broad range of key observed morphological and kinematic features, which can be explained in terms of well-understood physical mechanisms. We argue that the accretion of gas clouds onto the central regions of galaxies, where the rotation curve turns over and the tidal field is fully compressive, is accompanied by transformative dynamical changes to the clouds, leading to collapse and star formation. This can generate an evolutionary progression of cloud collapse with a common starting point, which either marks the time of accretion onto the tidally-compressive region or of the most recent pericentre passage. Together, these processes may naturally produce the synchronised starbursts observed in numerous (extra)galactic nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا