ﻻ يوجد ملخص باللغة العربية
We present a study of the three-dimensional structure of the molecular clouds in the Galactic Centre (GC) using CO emission and OH absorption lines. Two CO isotopologue lines, $^{12}$CO ($J$=1$rightarrow$0) and $^{13}$CO ($J$=1$rightarrow$0), and four OH ground-state transitions, surveyed by the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH), contribute to this study. We develop a novel method to calculate the OH column density, excitation temperature, and optical depth precisely using all four OH lines, and we employ it to derive a three-dimensional model for the distribution of molecular clouds in the GC for six slices in Galactic latitude. The angular resolution of the data is 15.5 arcmin, which at the distance of the GC (8.34 kpc) is equivalent to 38 pc. We find that the total mass of OH in the GC is in the range 2400-5100 Solar mass . The face-on view at a Galactic latitude of b = 0{deg} displays a bar-like structure with an inclination angle of 67.5 $pm$ 2.1{deg} with respect to the line of sight. No ring-like structure in the GC is evident in our data, likely due to the low spatial resolution of the CO and OH maps.
Measuring isotopic ratios is a sensitive technique used to obtain information on stellar nucleosynthesis and chemical evolution. We present measurements of the carbon and sulphur abundances in the interstellar medium of the central region of our Gala
Distance measurements to molecular clouds are essential and important. We present directly measured distances to 169 molecular clouds in the fourth quadrant of the Milky Way. Based on the near-infrared photometry from the Two Micron All Sky Survey an
We characterize the column density probability distributions functions (PDFs) of the atomic hydrogen gas, HI, associated with seven Galactic molecular clouds (MCs). We use 21 cm observations from the Leiden/Argentine/Bonn Galactic HI Survey to derive
We present a statistical analysis of the gravoturbulent velocity fluctuations in molecular cloud complexes extracted from our Cloud Factory galactic-scale ISM simulation suite. For this purpose, we produce non-LTE $^{12}$CO J=1-0 synthetic observatio
G+0.693-0.03 is a quiescent molecular cloud located within the Sagittarius B2 (Sgr B2) star-forming complex. Recent spectral surveys have shown that it represents one of the most prolific repositories of complex organic species in the Galaxy. The ori