ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden Order Beyond Hyperuniformity in Critical Absorbing States

66   0   0.0 ( 0 )
 نشر من قبل Yuanjian Zheng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Disordered hyperuniformity is a description of hidden correlations in point distributions revealed by an anomalous suppression in fluctuations of local density at various coarse-graining length scales. In the absorbing phase of models exhibiting an active-absorbing state transition, this suppression extends up to a hyperuniform length scale that diverges at the critical point. Here, we demonstrate the existence of additional many-body correlations beyond hyperuniformity. These correlations are hidden in the higher moments of the probability distribution of the local density, and extend up to a longer length scale with a faster divergence than the hyperuniform length on approaching the critical point. Our results suggest that a hidden order beyond hyperuniformity may generically be present in complex disordered systems.



قيم البحث

اقرأ أيضاً

263 - Daniel Hexner , Dov Levine 2014
The properties of the absorbing states of non-equilibrium models belonging to the conserved directed percolation universality class are studied. We find that at the critical point the absorbing states are hyperuniform, exhibiting anomalously small de nsity fluctuations. The exponent characterizing the fluctuations is measured numerically, a scaling relation to other known exponents is suggested, and a new correlation length relating to this ordering is proposed. These results may have relevance to photonic band-gap materials.
143 - Urna Basu , P. K. Mohanty 2009
We introduce and solve a model of hardcore particles on a one dimensional periodic lattice which undergoes an active-absorbing state phase transition at finite density. In this model an occupied site is defined to be active if its left neighbour is o ccupied and the right neighbour is vacant. Particles from such active sites hop stochastically to their right. We show that, both the density of active sites and the survival probability vanish as the particle density is decreased below half. The critical exponents and spatial correlations of the model are calculated exactly using the matrix product ansatz. Exact analytical study of several variations of the model reveals that these non-equilibrium phase transitions belong to a new universality class different from the generic active-absorbing-state phase transition, namely directed percolation.
We consider the scaling properties characterizing the hyperuniformity (or anti-hyperuniformity) of long wavelength fluctuations in a broad class of one-dimensional substitution tilings. We present a simple argument that predicts the exponent $alpha$ governing the scaling of Fourier intensities at small wavenumbers, tilings with $alpha>0$ being hyperuniform, and confirm with numerical computations that the predictions are accurate for quasiperiodic tilings, tilings with singular continuous spectra, and limit-periodic tilings. Tilings with quasiperiodic or singular continuous spectra can be constructed with $alpha$ arbitrarily close to any given value between $-1$ and $3$. Limit-periodic tilings can be constructed with $alpha$ between $-1$ and $1$ or with Fourier intensities that approach zero faster than any power law.
Fluctuation-induced forces occur generically when long-ranged correlations (e.g., in fluids) are confined by external bodies. In classical systems, such correlations require specific conditions, e.g., a medium close to a critical point. On the other hand, long-ranged correlations appear more commonly in certain non-equilibrium systems with conservation laws. Consequently, a variety of non-equilibrium fluctuation phenomena, including fluctuation-induced forces, have been discovered and explored recently. Here, we address a long-standing problem of non-equilibrium critical Casimir forces emerging after a quench to the critical point in a confined fluid with order-parameter-conserving dynamics and non-symmetry-breaking boundary conditions. The interplay of inherent (critical) fluctuations and dynamical non-local effects (due to density conservation) gives rise to striking features, including correlation functions and forces exhibiting oscillatory time-dependences. Complex transient regimes arise, depending on initial conditions and the geometry of the confinement. Our findings pave the way for exploring a wealth of non-equilibrium processes in critical fluids (e.g., fluctuation-mediated self-assembly or aggregation). In certain regimes, our results are applicable to active matter.
We analyze nonequilibrium lattice models with up-down symmetry and two absorbing states by mean-field approximations and numerical simulations in two and three dimensions. The phase diagram displays three phases: paramagnetic, ferromagnetic and absor bing. The transition line between the first two phases belongs to the Ising universality class and between the last two, to the direct percolation universality class. The two lines meet at the point describing the voter model and the size $ell$ of the ferromagnetic phase vanishes with the distance $varepsilon$ to the voter point as $ellsimvarepsilon$, with possible logarithm corrections in two dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا