ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical behavior in lattice models with two symmetric absorbing state

195   0   0.0 ( 0 )
 نشر من قبل Christophe Chatelain
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze nonequilibrium lattice models with up-down symmetry and two absorbing states by mean-field approximations and numerical simulations in two and three dimensions. The phase diagram displays three phases: paramagnetic, ferromagnetic and absorbing. The transition line between the first two phases belongs to the Ising universality class and between the last two, to the direct percolation universality class. The two lines meet at the point describing the voter model and the size $ell$ of the ferromagnetic phase vanishes with the distance $varepsilon$ to the voter point as $ellsimvarepsilon$, with possible logarithm corrections in two dimensions.



قيم البحث

اقرأ أيضاً

227 - P. K. Mohanty , Deepak Dhar 2007
We revisit the question whether the critical behavior of sandpile models with sticky grains is in the directed percolation universality class. Our earlier theoretical arguments in favor, supported by evidence from numerical simulations [ Phys. Rev. L ett., {bf 89} (2002) 104303], have been disputed by Bonachela et al. [Phys. Rev. E {bf 74} (2004) 050102] for sandpiles with no preferred direction. We discuss possible reasons for the discrepancy. Our new results of longer simulations of the one-dimensional undirected model fully support our earlier conclusions.
We study diffusion of hardcore particles on a one dimensional periodic lattice subjected to a constraint that the separation between any two consecutive particles does not increase beyond a fixed value $(n+1);$ initial separation larger than $(n+1)$ can however decrease. These models undergo an absorbing state phase transition when the conserved particle density of the system falls bellow a critical threshold $rho_c= 1/(n+1).$ We find that $phi_k$s, the density of $0$-clusters ($0$ representing vacancies) of size $0le k<n,$ vanish at the transition point along with activity density $rho_a$. The steady state of these models can be written in matrix product form to obtain analytically the static exponents $beta_k= n-k, u=1=eta$ corresponding to each $phi_k$. We also show from numerical simulations that starting from a natural condition, $phi_k(t)$s decay as $t^{-alpha_k}$ with $alpha_k= (n-k)/2$ even though other dynamic exponents $ u_t=2=z$ are independent of $k$; this ensures the validity of scaling laws $beta= alpha u_t,$ $ u_t = z u$.
235 - Daniel Hexner , Dov Levine 2014
The properties of the absorbing states of non-equilibrium models belonging to the conserved directed percolation universality class are studied. We find that at the critical point the absorbing states are hyperuniform, exhibiting anomalously small de nsity fluctuations. The exponent characterizing the fluctuations is measured numerically, a scaling relation to other known exponents is suggested, and a new correlation length relating to this ordering is proposed. These results may have relevance to photonic band-gap materials.
The critical behaviour of the O(n)-symmetric model with two n-vector fields is studied within the field-theoretical renormalization group approach in a D=4-2 epsilon expansion. Depending on the coupling constants the beta-functions, fixed points and critical exponents are calculated up to the one- and two-loop order, resp. (eta in two- and three-loop order). Continuous lines of fixed points and O(n)*O(2) invariant discrete solutions were found. Apart from already known fixed points two new ones were found. One agrees in one-loop order with a known fixed point, but differs from it in two-loop order.
Disordered hyperuniformity is a description of hidden correlations in point distributions revealed by an anomalous suppression in fluctuations of local density at various coarse-graining length scales. In the absorbing phase of models exhibiting an a ctive-absorbing state transition, this suppression extends up to a hyperuniform length scale that diverges at the critical point. Here, we demonstrate the existence of additional many-body correlations beyond hyperuniformity. These correlations are hidden in the higher moments of the probability distribution of the local density, and extend up to a longer length scale with a faster divergence than the hyperuniform length on approaching the critical point. Our results suggest that a hidden order beyond hyperuniformity may generically be present in complex disordered systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا