ﻻ يوجد ملخص باللغة العربية
In this paper we study the corrections emergent from a Lorentz-violating CPT-odd extension of the complex scalar sector to the Bose-Einstein condensation and to the thermodynamics parameters. We initially discussed some features of the model to only then compute the corrections to the Bose-Einstein condensation. The calculations were done by computing the generating functional, from which we extract the thermodynamics parameters. We also obtained a Lorentz-violating correction for the critical temperature $T_c$ that sets the Bose-Einstein Condensation.
We propose a unified description of two important phenomena: color confinement in large-$N$ gauge theory, and Bose-Einstein condensation (BEC). We focus on the confinement/deconfinement transition characterized by the increase of the entropy from $N^
Bose-Einstein condensation is a unique phase transition in that it is not driven by inter-particle interactions, but can theoretically occur in an ideal gas, purely as a consequence of quantum statistics. This chapter addresses the question emph{`How
In this paper we study the corrections emergent from a Hov{r}ava-Lifshitz extension of the complex scalar sector to the Bose-Einstein condensation and to the thermodynamics parameters. We initially discussed some features of the model to only then co
Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitio
We report on the attainment of Bose-Einstein condensation with ultracold strontium atoms. We use the 84Sr isotope, which has a low natural abundance but offers excellent scattering properties for evaporative cooling. Accumulation in a metastable stat